Skip to main content

Advertisement

Log in

Spatiotemporal dynamics of underwater conical shock wave focusing

  • Original Article
  • Published:
Shock Waves Aims and scope Submit manuscript

Abstract

The paper presents an experimental study on spatiotemporal dynamics of conical shock waves focusing in water. A multichannel pulsed electrohydraulic discharge source with a cylindrical ceramic-coated electrode was used. Time-resolved visualizations revealed that cylindrical pressure waves were focused to produce conical shock wave reflection over the axis of symmetry in water. Positive and negative pressures of 372 MPa and \(-17\) MPa at the focus with 0.48 mm lateral and 22 mm axial extension (\(-6\) dB) were measured by a fiber-optic probe hydrophone. The results clearly show the propagation process leading to the high-intensity underwater shock wave. Such strong and sharp shock wave focusing offers better localization for extracorporeal lithotripsy or other non-invasive medical shock wave procedures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Coleman, A.J., Saunders, J.E.: A review of the physical properties and biological effects of the high amplitude acoustic fields used in extracorporeal lithotripsy. Ultrasonics 31, 75–89 (1993)

    Article  Google Scholar 

  2. Cleveland, R.O., McAteer, J.A.: Physics of Shock-Wave Lithotripsy. In: Smith’s Textbook of Endourology, pp. 527-558. Wiley, New York (2012)

  3. Bluhm, H., Frey, W., Giese, H., Hoppe, P., Schultheiss, C., Strassner, R.: Application of pulsed HV discharges to material fragmentation and recycling. IEEE Trans. Dielectr. Electr. Insul. 7, 625–636 (2000)

    Article  Google Scholar 

  4. Delius, M.: Extracorporeal shock waves: bioeffects and mechanisms of action. In: Srivastava, R.C., Leutloff, D., Takayama, K., Grönig, H. (eds.) Shock Focussing Effect in Medical Science and Sonoluminescence, pp. 211–226. Springer, Berlin (2003)

    Chapter  Google Scholar 

  5. Sunka, P., Babicky, V., Clupek, M., Fuciman, M., Lukes, P., Simek, M., Benes, J., Locke, B.R., Majcherova, Z.: Potential applications of pulse electrical discharges in water. Acta Phys. Slovaca 54, 135–145 (2004)

    Google Scholar 

  6. Sunka, P., Babicky, V., Clupek, M., Benes, J., Pouckova, P.: Localized damage of tissues induced by focused shock waves. IEEE Trans. Plasma Sci. 32, 1609–1613 (2004)

    Article  Google Scholar 

  7. Lukes, P., Clupek, M., Babicky, V., Sunka, P.: Pulsed electrical discharge in water generated using porous-ceramic-coated electrodes. IEEE Trans. Plasma Sci. 36, 1146–1147 (2008)

    Article  Google Scholar 

  8. Stelmashuk, V., Hoffer, P.: Shock waves generated by an electrical discharge on composite electrode immersed in water with different conductivities. IEEE Trans. Plasma Sci. 40, 1907–1912 (2012)

    Article  Google Scholar 

  9. Lukes, P., Zeman, J., Horak, V., Hoffer, P., Pouckova, P., Holubova, M., Hosseini, S.H.R., Akiyama, H., Sunka, P., Benes, J.: In vivo effects of focused shock waves on tumor tissue visualized by fluorescence staining techniques. Bioelectrochemistry 103, 103–110 (2015)

    Article  Google Scholar 

  10. Hosseini, S.H.R., Menezes, V., Moosavi-Nejad, S., Ohki, T., Nakagawa, A., Tominaga, T., Takayama, K.: Development of shock wave assisted therapeutic devices and establishment of shock wave therapy. Minim. Invasive Ther. Allied Technol. 15, 230–240 (2006)

    Article  Google Scholar 

  11. Oshita, D., Hosseini, S.H.R., Miyamoto, Y., Mawatari, K., Akiyama, H.: Study of underwater shock waves and cavitation bubbles generated by pulsed electric discharges. IEEE Trans. Dielectr. Electr. Insul. 20, 1273–1278 (2013)

    Article  Google Scholar 

  12. Hosseini, S.H.R., Iwasaki, S., Sakugawa, T., Akiyama, H.: Characteristics of micro underwater shock waves produced by pulsed electric discharges for medical applications. J. Korean Phys. Soc. 59, 3526–3530 (2011)

    Article  Google Scholar 

  13. Matthujak, A., Hosseini, S.H.R., Takayama, K., Sun, M., Voinovich, P.: High speed jet formation by impact acceleration method. Shock Waves 16, 405–419 (2007)

    Article  Google Scholar 

  14. Eliasson, V., Mello, M., Rosakis, A.J., Dimotakis, P.E.: Experimental investigation of converging shocks in water with various confinement materials. Shock Waves 20, 395–408 (2010)

    Article  Google Scholar 

  15. Hosseini, S.H.R., Takayama, K.: Experimental study of toroidal shock wave focusing in a compact vertical annular diaphragmless shock tube. Shock Waves 20, 1–7 (2010)

    Article  Google Scholar 

  16. Hosseini, S.H.R., Takayama, K.: Experimental study of Richtmyer-Meshkov instability induced by cylindrical shockwaves. Phys. Fluids 17, 084101 (2005)

    Article  MATH  Google Scholar 

  17. Skews, B.W., Menon, N., Bredin, M., Timofeev, E.V.: An experiment on imploding conical shock waves. Shock Waves 11, 323–326 (2002)

    Article  Google Scholar 

  18. Carman, J.C.: Classroom measurements of sound speed in fresh/saline water. J. Acoust. Soc. Am. 131, 2455–2458 (2012)

  19. Gojani, A.B., Ohtani, K., Takayama, K., Hosseini, S.H.R.: Shock Hugoniot and equations of states of water, castor oil, and aqueous solutions of sodium chloride, sucrose and gelatin. Shock Waves 26, 63–68 (2016)

    Article  Google Scholar 

  20. Averkiou, M.A., Cleveland, R.O.: Modeling of an electrohydraulic lithotripter with the KZK equation. J. Acoust. Soc. Am. 106, 102–112 (1999)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported in part by Grant No. M100431203 from the Academy of Sciences of the Czech Republic and Grant-in-Aid for Scientific Research No. 24540539 from the Ministry of Education, Culture, Sports, Science and Technology of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Hosseini.

Additional information

Communicated by M. Brouillette.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hoffer, P., Lukes, P., Akiyama, H. et al. Spatiotemporal dynamics of underwater conical shock wave focusing. Shock Waves 27, 685–690 (2017). https://doi.org/10.1007/s00193-016-0703-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00193-016-0703-7

Keywords

Navigation