Skip to main content
Log in

Flow in a planar convergent–divergent nozzle

  • Original Article
  • Published:
Shock Waves Aims and scope Submit manuscript

Abstract

Flow in a convergent–divergent nozzle is studied for pressure ratios (NPR) of 1–11 and exit-to-throat area ratios of 1.2 to 2.0. The unsteady compressible Navier–Stokes equations along with the Spalart–Allmaras turbulence model are solved using a stabilized finite element method in two dimensions. Asymmetric flow is observed at moderate NPR. The side loads due to the flow asymmetry increase with increases in NPR and area ratio. Various flow regimes that are possible in the entire parameter space are identified. The introduction of boundary layer bleed results in steady and symmetric flow conditions at all NPR. Consequently, the nozzle does not experience a lateral force for any NPR. Application of bleed leads to a significant downstream shift in the shock location at low to moderate NPR. Compared to no-bleed, the nozzle experiences a loss of thrust in this regime. The thrust performance for \(\text {NPR} > 6\) is, however, unaffected by bleed. The effect of nozzle geometry on the flow at various NPR is studied. Four different geometries with the same area ratio and nozzle length are considered. These geometries differ from each other in terms of the nozzle surface profile, including the discontinuity in slope of the surface. Barring some minor differences at low to moderate NPR, the flow is similar for all the geometries considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

References

  1. Lawrence, R.A.: Thin layer approximation and algebraic model for separated turbulent flows, Research Report Number 67-1. Southern Methodist University (1967)

  2. Lawrence, R.A., Weynand, E.E.: Factors affecting flow separation in contoured supersonic nozzles. AIAA J. 6(6), 1159–1160 (1968)

    Article  Google Scholar 

  3. Hunter, C.A.: Experimental investigation of separated nozzle flows. J. Propul. Power 20(3), 527–532 (2004)

    Article  Google Scholar 

  4. Verma, S., Manisankar, C.: Origin of flow asymmetry in planar nozzles with separation. Shock Waves 24(2), 191–209 (2014)

    Article  Google Scholar 

  5. Bourgoing, A., Reijasse, P.: Experimental analysis of unsteady separated flows in a supersonic planar nozzle. Shock Waves 14(4), 251–258 (2005)

    Article  Google Scholar 

  6. Papamoschou, D., Zill, A., Johnson, A.: Supersonic flow separation in planar nozzles. Shock Waves 19(3), 171–183 (2009)

    Article  Google Scholar 

  7. Xiao, Q., Tsai, H.M., Papamoschou, D.: Numerical investigation of supersonic nozzle flow separation. AIAA J. 45(3), 532–541 (2007)

    Article  Google Scholar 

  8. Nave, L., Coffey, G.: Sea level side loads in high-area-ratio rocket engines, AIAA Paper 73-1284 (1973)

  9. Ostlund, J., Muhammad-Klingmann, B.: Supersonic flow separation with application to rocket engine nozzles. Appl. Mech. Rev. 58(3), 143–177 (2005)

    Article  Google Scholar 

  10. Hadjadj, A., Onofri, M.: Nozzle flow separation. Shock Waves 19(3), 163–169 (2009)

    Article  MATH  Google Scholar 

  11. Elmiligui, A., Abdol-Hamid, K.S., Hunter, C.A.: Numerical investigation of flow in an over-expanded nozzle with porous surfaces, AIAA Paper 2005-4159 (2005)

  12. Hunter, C.A.: Experimental, theoretical, and computational investigation of separated nozzle flows, AIAA Paper 98-3107 (1998)

  13. Hamed, A., Vogiatzis, C.: Overexpanded two-dimensional-convergent-divergent nozzle flow simulations, assessment of turbulence models. J. Propul. Power 13(3), 444–445 (1997)

    Article  Google Scholar 

  14. Balabel, A., Hegab, A., Nasr, M., El-Behery, S.M.: Assessment of turbulence modeling for gas flow in two-dimensional convergent-divergent rocket nozzle. Appl. Math. Model. 35(7), 3408–3422 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  15. Sellam, M., Fournier, G., Chpoun, A., Reijasse, P.: Numerical investigation of overexpanded nozzle flows. Shock Waves 24(1), 33–39 (2014)

    Article  Google Scholar 

  16. Girard, S.: Etude des interférences de choc dans les tuyères surdétendues à choc interne. Ph.D. thesis, Université Pierre et Marie Curie, Paris (2009)

  17. Spalart, P.R., Allmaras, S.R.: One-equation turbulence model for aerodynamic flows, AIAA Paper 92-0439 (1992)

  18. Kotteda, V.M.K., Mittal, S.: Flow in a Y-intake at supersonic speeds. J. Propul. Power 32(1), 171–187 (2016)

    Article  Google Scholar 

  19. Hughes, T.J.R., Brooks, A.N.: A multidimensional upwind scheme with no crosswind diffusion. In: Hughes, T.J.R. (ed.) Finite Element Methods for Convection Dominated Flows, AMD, vol. 34, pp. 19–35. ASME, New York (1979)

    Google Scholar 

  20. Brooks, A.N., Hughes, T.J.R.: Streamline upwind/Petrov–Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier–Stokes equations. Comput. Methods Appl. Mech. Eng. 32, 199–259 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  21. Tezduyar, T.E., Hughes, T.J.R.: Finite element formulations for convection dominated flows with particular emphasis on the compressible Euler equations. In: Proceedings of AIAA 21st Aerospace Sciences Meeting, Reno, NV, AIAA Paper 83-0125 (1983)

  22. Le Beau, G.J., Tezduyar, T.E.: Finite element computation of compressible flows with the SUPG formulation. In: M.N.  Dhaubhadel, M.S. Engelman, J.N. Reddy (eds.) Advances in Finite Element Analysis in Fluid Dynamics, FED-Vol. 123, pp. 21–27. ASME, New York (1991)

  23. Mittal, S.: Finite element computation of unsteady viscous compressible flows. Comput. Methods Appl. Mech. Eng. 157, 151–175 (1998)

    Article  MATH  Google Scholar 

  24. Mittal, S.: Finite element computation of unsteady viscous transonic flows past stationary airfoils. Comput. Mech. 21, 172–188 (1998)

    Article  MATH  Google Scholar 

  25. Kotteda, V.M.K., Mittal, S.: Stabilized finite-element computation of compressible flow with linear and quadratic interpolation functions. Int. J. Numer. Method. Fluids 75(4), 273–294 (2014)

  26. Mittal, S., Yadav, S.: Computation of flows in supersonic wind-tunnels. Comput. Methods Appl. Mech. Eng. 191(6), 611–634 (2001)

    Article  MATH  Google Scholar 

  27. Kotteda, V.M.K., Mittal, S.: Viscous flow in a mixed compression intake. Int. J. Numer. Methods. Fluids 67, 1393–1417 (2011)

    Article  MATH  Google Scholar 

  28. Mittal, S.: Computation of internal and external compressible flows using EDICT. Int. J. Comput. Fluid Dyn. 14, 225–241 (2001)

    Article  MATH  Google Scholar 

  29. Hughes, T.J.R., Mallet, M., Akira, M.: A new finite element formulation for computational fluid dynamics: II. Beyond SUPG. Comput. Methods Appl. Mech. Eng. 54(3), 341–355 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  30. Frey, M., Hagemann, G.: Restricted shock separation in rocket nozzles. J. Propul. Power 16(3), 478–484 (2000)

    Article  Google Scholar 

  31. Munday, D., Gutmark, E., Liu, J., Kailasanath, K.: Flow structure and acoustics of supersonic jets from conical convergent–divergent nozzles. Phys. Fluids 23(11), 116102 (2011)

    Article  Google Scholar 

  32. Liepmann, H.W., Roshko, A.: Elements of Gasdynamics. Wiley, New York (1957)

    MATH  Google Scholar 

  33. Barnhart, P.J.: NPAC-nozzle performance analysis code. NASA CR–204129 (1997)

  34. Howarth, L.: Modern Developments in Fluid Dynamics, vol. 1/2. Clarendon Press, Oxford (1953)

    Google Scholar 

  35. Jain, M.K., Mittal, S.: Euler flow in a supersonic mixed-compression inlet. Int. J. Numer. Methods. Fluids 50, 1405–1423 (2006)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Mittal.

Additional information

Communicated by A. Higgins and A. Hadjadj.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kotteda, V.M.K., Mittal, S. Flow in a planar convergent–divergent nozzle. Shock Waves 27, 441–455 (2017). https://doi.org/10.1007/s00193-016-0694-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00193-016-0694-4

Keywords

Navigation