Skip to main content
Log in

Numerical study of detonation wave propagation in a confined supersonic flow

  • Original Article
  • Published:
Shock Waves Aims and scope Submit manuscript

Abstract

The dynamics of detonation waves propagating in a confined supersonic flow is numerically investigated to understand the effects of incoming flow velocity in a combustion chamber on detonation properties and structure. The computational code is based on the Euler equations with detailed chemistry. The detonation is directly initiated with high pressure and temperature at a given region inside a straight tube and then propagates both upstream and downstream. The study shows that as the incoming flow velocity increases, the properties of the detonation wave moving upstream and downstream are significantly changed. This leads to an increase or decrease in the velocity and strength of the detonation wave, and a change in smoked foil cellular pattern. It was found that the strength of the upstream-moving detonation becomes higher and the propagation velocity decreases as the incoming velocity increases. These factors result in a change of the smoked foil pattern such as the cell length, width, and track angle. Moreover, the time in stabilizing the detonations moving in opposite directions is significantly changed with a supersonic incoming flow. An initiation delay occurs on the downstream-moving detonation since it is weakened in a supersonic flow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Fickett, W., Davis, W.C.: Detonation: Theory and Experiment. Dover Publications, Mineola (2000)

    Google Scholar 

  2. Lee, J.H.S.: The Detonation Phenomenon. Cambridge University Press, New York (2008)

    Book  Google Scholar 

  3. Oran, E.S., Weber, J.W., Stefaniw, E.I., Lefebvre, M.H., Anderson, J.D.: A numerical study of a two-dimensional \({\rm H}_{2}\)-\({\rm O}_{2}\)-Ar detonation using a detailed chemical reaction model. Combust. Flame 113, 147–163 (1998)

    Article  Google Scholar 

  4. Hu, X.Y., Zhang, D.L., Khoo, B.C., Jiang, Z.L.: The structure and evolution of a two-dimensional \({\rm H}_{2}/{\rm O}_{2}\)/Ar cellular detonation. Shock Waves 14, 37–44 (2005)

  5. Deiterding, R.: Parallel adaptive simulation of multi-dimensional detonation structures, PhD Dissertation, Brandenburgische Technische Universität, Germany (2003)

  6. Carrier, G.F., Fendell, F.E., Fink, S.F.: Nonintrusive stabilization of a conical detonation wave for supersonic combustion. Combust. Flame 103, 281–295 (1995)

    Article  Google Scholar 

  7. Wilson, D.R., Lu,F.K., Kim, H.Y., Munipalli, R.: Analysis of a pulsed normal detonation wave concept. AIAA 2001-17845 (2001)

  8. Yi, T.H., Wilson, D.R., Lu, F.K.: Numerical study of unsteady detonation wave propagation in a supersonic combustion chamber. In: Jagadeesh, G., Arunan, E., Reddy, K.P.J. (eds.) Proceedings of the 25th International Symposium on Shock Waves. Paper No. 10041, Universities Press, Andhra Pradesh, India (2006)

  9. Levin, V.A., Vladimir, V.V., Markov,V., Zhuravskaya, T.A., Osinkin, S.F.: Initiation of detonation in the supersonic gas flow. In: Proceedings of the 21st International Colloquium on the Dynamics of Explosions and Reactive Systems, 79 (CD), Poitiers, France (2007)

  10. Ishii, K., Kataoka, H., Kojima, T.: Initiation and propagation of detonation waves in combustible high speed flows. Proc. Combust. Inst. 32, 2323–2330 (2009)

    Article  Google Scholar 

  11. Vasilev, A.A., Zvegintsev, V.I., Nalivaichenko, D.G.: Detonation waves in a reactive supersonic flow. Combust. Explos. Shock Waves 42, 568–581 (2006)

    Article  Google Scholar 

  12. Yi, T.H., Anderson, D.A., Wilson, D.R., Lu, F.K.: Numerical study of two-dimensional viscous, chemically reacting flow. AIAA 2005-4868 (2005)

  13. Brown, P.N., Byrne, G.D., Hindmarsh, A.C.: VODE: a variable-coefficient ODE solver. SIAM J. Sci. Stat. Comput. 10, 1038–1051 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  14. Smith, G.P., Golden, D.M., Frenklach, M., Moriarty, N.W., Eiteneer, B., Goldenberg, M., Bowman, C.T., Hanson, R.K., Song, S., Gardiner, Jr., W.C., Lissianski, V.V.: GRI-Mech 3.0. http://combustion.berkeley.edu/gri-mech/

  15. MacNeice, P., Olson, K.M., Mobarry, C., deFainchtein, R., Packer, C.: PARAMESH: a parallel adaptive mesh refinement community toolkit. Comput. Phys. Commun. 126, 330–354 (2000)

    Article  MATH  Google Scholar 

  16. Tannehill, J.C., Anderson, D.A., Pletcher, R.H.: Computational Fluid Mechanics and Heat Transfer. Taylor & Francis, Washington (1997)

    MATH  Google Scholar 

  17. Gordon, S., McBride, B.J.: Computer program for calculation of complex chemical equilibrium compositions and application I. Analysis. NASA RP-1311 (1976)

  18. Kee, R.J., Coltrin, M., Glarborg, P.: Chemically Reacting Flow. Wiley, New Jersey (2003)

    Book  Google Scholar 

  19. Turns, S.R.: An Introduction to Combustion: Concepts and Application. McGraw-Hill, New Jersey (1996)

    Google Scholar 

  20. Leveque, R.J.: Finite Volume Methods for Hyperbolic Problems. Cambridge University Press, New York (2002)

  21. Bussing, T., Pappas, G.: An introduction to pulse detonation engines. AIAA 94-0263 (1994)

  22. Schultz, E., Shepherd, J.E.: Validation of detailed reaction mechanisms for detonation simulation. FM99-5, California Institute of Technology (2000)

  23. Konnov, A.A.: Detailed reaction mechanism for small hydrocarbons combustion. 15th JOURNEES D’ETUDES of the Belgian Section of the Combustion Institute (1996)

  24. Tan, Y., Dagaut, P., Cathonnet, M., Boettner, J.C., Bachman, J.S., Carlier, P.: Natural gas and blends oxidation and ignition: experiments and modeling. In: 25th International Symposium on Combustion, vol. 25, pp. 1563–1569 (1994)

  25. Sharpe, G.J.: Transverse wave in numerical simulation of cellular detonations. J. Fluid Mech. 447, 31–52 (2001)

    Article  MATH  Google Scholar 

  26. Massa, L., Chauhan, M., Lu, F.K.: Detonation turbulence interaction. Combust. Flame 158, 1788–1806 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. H. Yi.

Additional information

Communicated by L. Bauwens.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yi, T.H., Lu, F.K., Wilson, D.R. et al. Numerical study of detonation wave propagation in a confined supersonic flow. Shock Waves 27, 395–408 (2017). https://doi.org/10.1007/s00193-016-0666-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00193-016-0666-8

Keywords

Navigation