Lesh, F.: Means and method for extinguishing oil well fires. US Patent US2096970 A (1937)
Husain, T.: Extinguishing of Kuwait oil fires—challenges, technology, and success. Atmos. Environ. 28(13), 2139–2147 (1994)
Article
Google Scholar
Akhmetov, D.G., Lugovtsov, B.A., Tarasov, V.F.: Extinguishing gas and oil well fires by means of vortex rings. Combust. Explos. Shock Waves 16(5), 490–494 (1980)
Article
Google Scholar
Akhmetov, D.G., Lugovtsov, B.A., Maletin, V.A.: Vortex powder method for extinguishing a fire on sprouting gas-oil wells. In: Zarko, V.E., Weiser, V., Eisenreich, N., Vasil’ev, A.A. (eds.) Prevention of Hazardous Fires and Explosions, pp. 319–328. Springer, New York (1999)
Chapter
Google Scholar
Xue, Y., Quio, X.H., Jin, G.J.: Research on ignition and extinguishing by explosion of high explosive. Blasting 2, 26–30 (2009)
Google Scholar
Grishin, A.: Interaction of shockwaves with tree crowns and the front of crown forest fires. In: Brun, R., Dumitrescu, L.Z. (eds.) Shockwaves at Marseille III, pp. 411–416. Springer, New York (1995). doi:10.1007/978-3-642-78835-2_70
Chapter
Google Scholar
Doig, G.C., Johnson, Z., Mann, R.: Shock wave interaction with a flame. In: 18th Australasian Fluid Mechanics Conference (2012)
Doig, G.C., Johnson, Z., Mann, R.: Interaction of a shock tube exhaust flow with a non-premixed flame. J. Vis. 16, 173–176 (2013)
Article
Google Scholar
Kilchyk, V., Nalim, R., Merkle, C.: Laminar premixed flame fuel consumption rate modulation by shocks and expansion waves. Combust. Flame 158(6), 1140–1148 (2011)
Article
Google Scholar
Kilchyk, V., Nalim, R., Merkle, C.: Scaling interface length increase rates in Richtmyer-Meshkov instabilities. J. Fluids Eng. 135(3), 031,203 (2013)
Article
Google Scholar
Akhmetov, D.G.: Formation and basic parameters of vortex rings. J. Appl. Mech. Techn. Phys. 42(5), 794–805 (2001)
Article
Google Scholar
Kashimura, H., Yasunobu, T., Nakayama, H., Setoguchi, T., Matsuo, K.: Discharge of a shock wave from an open end of a tube. J. Therm. Sci. 9(1), 30–36 (2000)
Article
Google Scholar
Murugan, T., Sudipta, S., Laxmana, D., Das, D.: Numerical simulation and PIV study of formation and evolution of compressible vortex ring. Shock Waves 22(1), 69–83 (2012)
Article
Google Scholar
Murugan, T., Das, D.: Characteristics of counter-rotating vortex rings formed ahead of a compressible vortex ring. Exp. Fluids 49, 1247–1261 (2010)
Article
Google Scholar
Dabiri, J.O., Gharib, M.: Fluid entrainment by isolated vortex rings. J. Fluid Mech. 511, 311–331 (2004)
Chan, J.E., Giannuzzi, P., Kabir, K.R., Hargather, M.J., Doig, G.: Interactions of shock tube exhaust flows with laminar and turbulent flames In: AIAA SciTech. San Diego, CA, Paper AIAA-2016-1588 (2016)
Hargather, M.J., Settles, G.S.: Retroreflective shadowgraph technique for large-scale visualization. Appl. Optics 48, 4449–4457 (2009)
Article
Google Scholar
Settles, G.S.: Schlieren and shadowgraph techniques: Visualizing phenomena in transparent media. Springer-Verlag, Heidelberg (2001)
Book
MATH
Google Scholar
Hargather, M.J., Settles, G.S.: Optical measurement and scaling of blasts from gram-range explosive charges. Shock Waves 17, 215–223 (2007)
Article
Google Scholar
Dewey, J.M.: Explosive flows: Shock tubes and blast waves. In: Handbook of Flow Visualization, 1st edn., book chapter 29, pp. 481–497. Hemisphere Publishing Corp. (1989)
Baird, J.P.: Supersonic vortex rings. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 409(1836), 59–65 (1987)
Kleine, H.: Time-resolved visualization of transient compressible flows. In: 15th International Symposium on Flow Visualization, Minsk, Belarus, Paper ISFV15-158 (2012)