Shock Waves

, Volume 26, Issue 6, pp 851–857 | Cite as

Explosive-driven shock wave and vortex ring interaction with a propane flame

  • P. M. Giannuzzi
  • M. J. HargatherEmail author
  • G. C. Doig
Technical note


Experiments were performed to analyze the interaction of an explosively driven shock wave and a propane flame. A 30 g explosive charge was detonated at one end of a 3-m-long, 0.6-m-diameter shock tube to produce a shock wave which propagated into the atmosphere. A propane flame source was positioned at various locations outside of the shock tube to investigate the effect of different strength shock waves. High-speed retroreflective shadowgraph imaging visualized the shock wave motion and flame response, while a synchronized color camera imaged the flame directly. The explosively driven shock tube was shown to produce a repeatable shock wave and vortex ring. Digital streak images show the shock wave and vortex ring propagation and expansion. The shadowgrams show that the shock wave extinguishes the propane flame by pushing it off of the fuel source. Even a weak shock wave was found to be capable of extinguishing the flame.


Shadowgraph Vortex ring Flame extinguishment  Explosive shock wave Flow visualization 



Funding was provided by the American Australian Association through a fellowship awarded to G.C. Doig, and UNSW Australia’s School of Mechanical and Manufacturing Engineering. We specially thank everyone at EMRTC who assisted with the testing, including N. Canafax, J. Peralta, and R. Weaver.


  1. 1.
    Lesh, F.: Means and method for extinguishing oil well fires. US Patent US2096970 A (1937)Google Scholar
  2. 2.
    Husain, T.: Extinguishing of Kuwait oil fires—challenges, technology, and success. Atmos. Environ. 28(13), 2139–2147 (1994)CrossRefGoogle Scholar
  3. 3.
    Akhmetov, D.G., Lugovtsov, B.A., Tarasov, V.F.: Extinguishing gas and oil well fires by means of vortex rings. Combust. Explos. Shock Waves 16(5), 490–494 (1980)CrossRefGoogle Scholar
  4. 4.
    Akhmetov, D.G., Lugovtsov, B.A., Maletin, V.A.: Vortex powder method for extinguishing a fire on sprouting gas-oil wells. In: Zarko, V.E., Weiser, V., Eisenreich, N., Vasil’ev, A.A. (eds.) Prevention of Hazardous Fires and Explosions, pp. 319–328. Springer, New York (1999)CrossRefGoogle Scholar
  5. 5.
    Xue, Y., Quio, X.H., Jin, G.J.: Research on ignition and extinguishing by explosion of high explosive. Blasting 2, 26–30 (2009)Google Scholar
  6. 6.
    Grishin, A.: Interaction of shockwaves with tree crowns and the front of crown forest fires. In: Brun, R., Dumitrescu, L.Z. (eds.) Shockwaves at Marseille III, pp. 411–416. Springer, New York (1995). doi: 10.1007/978-3-642-78835-2_70 CrossRefGoogle Scholar
  7. 7.
    Doig, G.C., Johnson, Z., Mann, R.: Shock wave interaction with a flame. In: 18th Australasian Fluid Mechanics Conference (2012)Google Scholar
  8. 8.
    Doig, G.C., Johnson, Z., Mann, R.: Interaction of a shock tube exhaust flow with a non-premixed flame. J. Vis. 16, 173–176 (2013)CrossRefGoogle Scholar
  9. 9.
    Kilchyk, V., Nalim, R., Merkle, C.: Laminar premixed flame fuel consumption rate modulation by shocks and expansion waves. Combust. Flame 158(6), 1140–1148 (2011)CrossRefGoogle Scholar
  10. 10.
    Kilchyk, V., Nalim, R., Merkle, C.: Scaling interface length increase rates in Richtmyer-Meshkov instabilities. J. Fluids Eng. 135(3), 031,203 (2013)CrossRefGoogle Scholar
  11. 11.
    Akhmetov, D.G.: Formation and basic parameters of vortex rings. J. Appl. Mech. Techn. Phys. 42(5), 794–805 (2001)CrossRefGoogle Scholar
  12. 12.
    Kashimura, H., Yasunobu, T., Nakayama, H., Setoguchi, T., Matsuo, K.: Discharge of a shock wave from an open end of a tube. J. Therm. Sci. 9(1), 30–36 (2000)CrossRefGoogle Scholar
  13. 13.
    Murugan, T., Sudipta, S., Laxmana, D., Das, D.: Numerical simulation and PIV study of formation and evolution of compressible vortex ring. Shock Waves 22(1), 69–83 (2012)CrossRefGoogle Scholar
  14. 14.
    Murugan, T., Das, D.: Characteristics of counter-rotating vortex rings formed ahead of a compressible vortex ring. Exp. Fluids 49, 1247–1261 (2010)CrossRefGoogle Scholar
  15. 15.
    Dabiri, J.O., Gharib, M.: Fluid entrainment by isolated vortex rings. J. Fluid Mech. 511, 311–331 (2004)Google Scholar
  16. 16.
    Chan, J.E., Giannuzzi, P., Kabir, K.R., Hargather, M.J., Doig, G.: Interactions of shock tube exhaust flows with laminar and turbulent flames In: AIAA SciTech. San Diego, CA, Paper AIAA-2016-1588 (2016)Google Scholar
  17. 17.
    Hargather, M.J., Settles, G.S.: Retroreflective shadowgraph technique for large-scale visualization. Appl. Optics 48, 4449–4457 (2009)CrossRefGoogle Scholar
  18. 18.
    Settles, G.S.: Schlieren and shadowgraph techniques: Visualizing phenomena in transparent media. Springer-Verlag, Heidelberg (2001)CrossRefzbMATHGoogle Scholar
  19. 19.
    Hargather, M.J., Settles, G.S.: Optical measurement and scaling of blasts from gram-range explosive charges. Shock Waves 17, 215–223 (2007)CrossRefGoogle Scholar
  20. 20.
    Dewey, J.M.: Explosive flows: Shock tubes and blast waves. In: Handbook of Flow Visualization, 1st edn., book chapter 29, pp. 481–497. Hemisphere Publishing Corp. (1989)Google Scholar
  21. 21.
    Baird, J.P.: Supersonic vortex rings. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 409(1836), 59–65 (1987)Google Scholar
  22. 22.
    Kleine, H.: Time-resolved visualization of transient compressible flows. In: 15th International Symposium on Flow Visualization, Minsk, Belarus, Paper ISFV15-158 (2012)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • P. M. Giannuzzi
    • 1
  • M. J. Hargather
    • 2
    Email author
  • G. C. Doig
    • 3
    • 4
  1. 1.Energetic Materials Research and Testing Center (EMRTC)New Mexico TechSocorroUSA
  2. 2.Mechanical Engineering Department and EMRTCNew Mexico TechSocorroUSA
  3. 3.Aerospace Engineering DepartmentCalifornia Polytechnic State UniversitySan Luis ObispoUSA
  4. 4.School of Mechanical and Manufacturing EngineeringUniversity of New South WalesSydneyAustralia

Personalised recommendations