Skip to main content

Interaction theory of hypersonic laminar near-wake flow behind an adiabatic circular cylinder


The separation and shock wave formation on the aft-body of a hypersonic adiabatic circular cylinder were studied numerically using the open source software OpenFOAM. The simulations of laminar flow were performed over a range of Reynolds numbers (\(8\times 10^3 < Re < 8\times 10^4\)) at a free-stream Mach number of 5.9. Off-body viscous forces were isolated by controlling the wall boundary condition. It was observed that the off-body viscous forces play a dominant role compared to the boundary layer in displacement of the interaction onset in response to a change in Reynolds number. A modified free-interaction equation and correlation parameter has been presented which accounts for wall curvature effects on the interaction. The free-interaction equation was manipulated to isolate the contribution of the viscous–inviscid interaction to the overall pressure rise and shock formation. Using these equations coupled with high-quality simulation data, the underlying mechanisms resulting in Reynolds number dependence of the lip-shock formation were investigated. A constant value for the interaction parameter representing the part of the pressure rise due to viscous–inviscid interaction has been observed at separation over a wide range of Reynolds numbers. The effect of curvature has been shown to be the primary contributor to the Reynolds number dependence of the free-interaction mechanism at separation. The observations in this work have been discussed here to create a thorough analysis of the Reynolds number-dependent nature of the lip-shock.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12


  1. Aghababaie, A.A., Theunissen, R.: Modeling free shock separation induced side loads in overexpanded rocket nozzles. AIAA J. 53(1), 93–103 (2015). doi:10.2514/1.J053014

    Article  Google Scholar 

  2. Anderson, J.D.: Hypersonic and High-Temperature Gas Dynamics, 2nd edn. American Institute of Aeronautics and Astronautics, Blacksburg (2006)

    Book  Google Scholar 

  3. Arisman, C., Johansen, C.T.: Nitric oxide chemistry effects in hypersonic boundary layers. AIAA J. 53(12), 3652–3660 (2015)

    Article  Google Scholar 

  4. Arisman, C., Johansen, C.T., Bathel, B., Danehy, P.: Investigation of gas seeding for planar laser-induced fluorescence in hypersonic boundary layers. AIAA J. 53(12), 3637–3651 (2015)

    Article  Google Scholar 

  5. Arisman, C., Johansen, C.T., Galuppo, W., McPhail, A.: Nitric oxide chemistry effects in hypersonic boundary layers. In: 43rd Fluid Dynamics Conference. American Institute of Aeronautics and Astronautics, Reston, Virginia (2013). doi:10.2514/6.2013-3104

  6. Bashkin, V.A., Vaganov, A.V., Egorov, I.V., Ivanov, D.V., Ignatova, G.A.: Comparison of calculated and experimental data on supersonic flow past a circular cylinder. Fluid Dyn. 37(3), 473–483 (2002)

    Article  MATH  Google Scholar 

  7. Baum, E.: Interacting supersonic laminar wake calculations by a finite difference method. AIAA J. 5(7), 1224–1230 (1967). doi:10.2514/3.4175

    Article  Google Scholar 

  8. Baum, E.: An interaction model of a supersonic laminar boundary layer on sharpand rounded backward facing steps. AIAA J. 6(3), 440–447 (1968). doi:10.2514/3.4518

    Article  MATH  Google Scholar 

  9. Baum, E., King, H.H., Denison, M.R.: Recent studies of the laminar base-flow region. AIAA J. 2(9), 1527–1534 (1964)

    Article  MATH  Google Scholar 

  10. Bekka, N., Sellam, M., Chpoun, A.: Aeroelastic stability analysis of flexible overexpanded rocket nozzle. Shock Waves (2015). doi:10.1007/s00193-015-0575-2

  11. Carrière, P., Sirieix, M., Solignac, J.L.: Similarity properties of the laminar or turbulent separation phenomena in a non-uniform supersonic flow. In: Hetenyi, M., Vincenti, W.G. (eds.) Applied Mechanics. Proceedings of the Twelfth International Congress of Applied Mechanics, Stanford University, August 26–31, 1968 pp. 145–157. Springer, Berlin, Heidelberg (1968)

  12. Chapman, D.R.: Laminar mixing of a compressible fluid (Report 958). Technical report, National Advisory Committee for Aeronautics (1950).

  13. Chapman, D.R., Kuehn, D.M., Larson, H.K.: Investigation of separated flows in supersonic and subsonic streams with emphasis on the effect of transition (Report 1356). Technical report, National Advisory Committee for Aeronautics (1958)

  14. Combs, C.S., Clemens, N.T., Danehy, P.M., Bathel, B., Parker, R., Wadhams, T., Holden, M., Kirk, B.: NO PLIF visualization of the orion capsule in LENS-I. In: 51st AIAA Aerospace Sciences Meeting. American Institute of Aeronautics and Astronautics, Grapevine, Texas (2013)

  15. Crocco, L., Lees, L.: A mixing theory for the interaction between dissipative flows and nearly isentropic streams. J. Aeronaut. Sci. 19(10), 649–676 (1952)

    Article  MATH  Google Scholar 

  16. Delery, J.: Physical introduction, chap. 2. In: Babinsky, H., Harvey, J.K. (eds.) Shock Wave-Boundary Layer Interactions, 1st edn, pp. 5–86. Cambridge University Press, New York (2011)

    Chapter  Google Scholar 

  17. Denison, M.R., Baum, E.: Compressible free shear layer with finite initial thickness. AIAA J. 1(2), 342–349 (1963). doi:10.2514/3.1535

    Article  MATH  Google Scholar 

  18. Dewey, C.F.: Near wake of a blunt body at hypersonic speeds. AIAA J. 3(6), 1001–1010 (1965)

    Article  Google Scholar 

  19. Dyakonov, A.A., Schoenenberger, M., Scallion, W.I., Norman, J.W.V., Novak, L.A., Tang, C.Y.: Aerodynamic interference due to MSL reaction control system. In: 41st AIAA Thermophysics Conference, pp. 1–16 (2009)

  20. Erdos, J., Pallone, A.: Shock boundry layer interaction and flow separation. In: Proceedings of the 1962 Heat Transfer and Fluid Mechanics Institute, Stanford University Press (1962)

  21. Grange, Jm, Klineberg, J.M., Lees, L.: Laminar boundary-layer separation and near-wake flow for a smooth blunt body at supersonic and hypersonic speeds. AIAA J. 5(6), 1089–1096 (1967)

    Article  Google Scholar 

  22. Grasso, F., Pettinelli, C.: Analysis of laminar near-wake hypersonic flows. J. Spacecr. Rockets 32(6), 970–980 (1995). doi:10.2514/3.26717

    Article  Google Scholar 

  23. Greenshields, C.J., Weller, H.G., Gasparini, L., Reese, J.M.: Implementation of semi-discrete, non-staggered central schemes in a colocated, polyhedral, finite volume framework, for high-speed viscous flows. Int. J. Numer. Methods Fluids (2009). doi:10.1002/fld.2069

  24. Hama, F.R.: Experimental studies on the lip shock. AIAA J. 6(2), 212–219 (1968)

    Article  Google Scholar 

  25. Hollis, B.R.: Blunt-body entry vehicle aerotherodynamics: transition and turbulent heating. J. Spacecr. Rockets 49(3), 435–449 (2012). doi:10.2514/1.51864

    Article  Google Scholar 

  26. Hruschka, R., O’Byrne, S., Kleine, H.: Comparison of velocity and temperature measurements with simulations in a hypersonic wake flow. Exp. Fluids 51(2), 407–421 (2011). doi:10.1007/s00348-011-1039-9

    Article  Google Scholar 

  27. Johansen, C.T., Danehy, P.M., Ashcraft, S.W., Bathel, B.F., Inman, Ja, Jones, S.B.: Planar laser-induced fluorescence of Mars Science Laboratory reaction control system jets. J. Spacecr. Rockets 50(4), 781–792 (2013). doi:10.2514/1.A32214

    Article  Google Scholar 

  28. Johansen, C.T., Novak, L., Bathel, B.F., Ashcraft, S.W., Danehy, P.M.: Mars Science Laboratory reaction control system jet computations with visualization and velocimetry. J. Spacecr. Rockets 50(6), 1183–1195 (2013). doi:10.2514/1.A32496

    Article  Google Scholar 

  29. Keanini, R.G., Brown, A.M.: Scale analysis and experimental observations of shock-induced turbulent boundary layer separation in nozzles. Eur. J. Mech. B/Fluids 26(4), 494–510 (2007). doi:10.1016/j.euromechflu.2006.10.002

    Article  MATH  Google Scholar 

  30. Lees, L.: Hypersonic wakes and trails. AIAA J. 2(3), 417–428 (1964)

    MathSciNet  Article  MATH  Google Scholar 

  31. Lees, L., Reeves, B.L.: Supersonic separated and reattaching laminar flows: I. General theory and application to adiabatic boundary-layer/shock-wave interactions. AIAA J. 2(11), 1907–1920 (1964)

    MathSciNet  Article  MATH  Google Scholar 

  32. McCarthy, J.F., Kubota, T.: A study of wakes behind a circular cylinder at m equal 5.7. AIAA J. 2(4), 629–636 (1964). doi:10.2514/3.2399

    Article  MATH  Google Scholar 

  33. Nance, R.P., Hollis, B.R., Horvath, T.J., Alter, S.J., Hassan, H.A.: Computational study of hypersonic transitional wake flow. J. Thermophys. Heat Transf. 13(2), 236–242 (1999). doi:10.2514/2.6441

    Article  Google Scholar 

  34. NIST-JANAF: NIST-JANAF Thermochemical Tables (2013).

  35. O’Byrne, S.: Hypersonic laminar boundary layers and near-wake flows. Ph.D. thesis, The Australian National University (2001)

  36. Ohrenberger, J.T., Baum, E.: A theoretical model of the near wake of a slender body in supersonic flow. AIAA J. 10(9), 1165–1172 (1972). doi:10.2514/3.50344

  37. Ostlund, J., Muhammad-Klingmann, B.: Supersonic flow separation with application to rocket engine nozzles. Appl. Mech. Rev. 58(3), 143 (2005). doi:10.1115/1.1894402

    Article  Google Scholar 

  38. Park, G., Gai, S.L., Neely, A.J.: Laminar near wake of a circular cylinder at hypersonic speeds. AIAA J. 48(1), 236–248 (2010). doi:10.2514/1.44167

    Article  Google Scholar 

  39. Rathakrishnan, E.: Theoretical Aerodynamics, 1st edn. John Wiley & Sons Singapore Pte. Ltd., Singapore (2013)

    Google Scholar 

  40. Reeves, B.L., Lees, L.: Theory of laminar near wake of blunt bodies in hypersonic flow. AIAA J. 3(11), 2061–2074 (1965)

    Article  Google Scholar 

  41. Skurin, I., Yurkov, A.V.: Approximate calculation of parameters at the throat of a hypersonic wake. J. Appl. Mech. Tech. Phys. 19(2), 183–187 (1978)

    Article  Google Scholar 

  42. Smith, J.H., Lamb, J.P.: Eclectic merger of crocco-lees and chapman-korst approach to near-wake. Int. J. Heat Mass Transf. 17, 1571–1589 (1974)

    Article  Google Scholar 

  43. Tewfik, O.K., Giedt, W.H.: Heat transfer, recovery factor and pressure distributions around a circular cylinder normal to a supersonic rarefied-air stream. J. Aerosp. Sci. 27(10), 721–729 (1960)

    Article  MATH  Google Scholar 

  44. Weinbaum, S.: Rapid expansion of a supersonic boundary layer and its application to the near wake. AIAA J. 4(2), 217–226 (1966). doi:10.2514/3.3422

    Article  Google Scholar 

  45. Weiss, R.F.: Base pressure of slender bodies in laminar, hypersonic flow. AIAA J. 4(9), 1557–1559 (1966). doi:10.2514/3.3735

    Article  Google Scholar 

  46. Weiss, R.F.: A new theoretical solution of the laminar, hypersonic near wake. AIAA J. 5(12), 2142–2149 (1967). doi:10.2514/3.4399

    Article  Google Scholar 

  47. Weiss, R.F., Weinbaum, S.: Hypersonic boundary-layer separation and the base flow problem. AIAA J. 4(8), 1321–1330 (1966). doi:10.2514/3.3672

    Article  Google Scholar 

Download references


This research was enabled in part by support provided by WestGrid ( and Compute Canada Calcul Canada ( Financial support was provided by Dr. Johansen’s Discovery Grant under the Natural Sciences and Engineering Research Council of Canada (NSERC). Mr. Hinman was partially supported through the Queen Elizabeth II Graduate Scholarship (QEII) administered by the government of Alberta.

Author information

Authors and Affiliations


Corresponding author

Correspondence to W. Schuyler Hinman.

Additional information

Communicated by H. Olivier.

Appendix: Derivation of free-interaction for a cylindrical aft-body

Appendix: Derivation of free-interaction for a cylindrical aft-body

The following derivation follows closely the derivation given by Délery [16] for the Chapman [13] free-interaction theory. Starting with the boundary layer momentum equation in the streamwise direction at the wall the following simple relationship can be found. In these derivations, x refers to the streamwise distance, and y refers to the wall normal distance.

$$\begin{aligned} \displaystyle \frac{{\hbox {d}}p}{{\hbox {d}}x}=\left( \frac{\partial \tau }{\partial y}\right) _\mathrm{w} \end{aligned}$$

Integrating both sides:

$$\begin{aligned} \displaystyle p\left( \bar{x}\right) -p\left( \bar{x}_\mathrm{o}\right) =\int \limits _{x_\mathrm{o}}^{x}\left( \frac{\partial \tau }{\partial y}\right) _\mathrm{w} {\hbox {d}}x \end{aligned}$$

Introducing the non-dimensional variables \(\bar{\tau }=\tau /\tau _\mathrm{wo}\), \(\bar{y}=y/\delta _\mathrm{o}^*\), \(q_\mathrm{o}=0.5\gamma p_\mathrm{e}\left( x_\mathrm{o}\right) M_\mathrm{e,o}^2\) and \(C_{fo}=\tau _\mathrm{wo}/q_\mathrm{o}\) the equation becomes:

$$\begin{aligned} \displaystyle \frac{p\left( \bar{x}\right) -p\left( \bar{x}_\mathrm{o}\right) }{q_\mathrm{o}}=C_{fo}\frac{L_ sep }{\delta _\mathrm{o}^*} f_1\left( \bar{x}\right) \end{aligned}$$


$$\begin{aligned} \displaystyle f_1\left( \bar{x}\right) =\int \limits _{\bar{x}_\mathrm{o}}^{\bar{x}}\left( \frac{\partial \bar{\tau }}{\partial \bar{y}}\right) _\mathrm{w} {\hbox {d}}\bar{x} \end{aligned}$$

This is the first equation needed to define the interaction. The second equation represents the pressure rise due to external flow deflection.

$$\begin{aligned} \displaystyle \frac{\sqrt{M_\mathrm{e,o}^2-1}}{\gamma M_\mathrm{e,o}^2} \frac{{\hbox {d}}p}{p}={\hbox {d}} \varphi \end{aligned}$$

In its linearized form:

$$\begin{aligned} \displaystyle \frac{\sqrt{M_\mathrm{e,o}^2-1}}{\gamma M_\mathrm{e,o}^2} \frac{\Delta p}{p}=\Delta \varphi \end{aligned}$$

The following is the only significant difference from the derivation of Chapman [13, 16]. The streamline deflection angle \(\varphi \) in the case of a cylinder is the sum of the deflection from viscous–inviscid interaction and the deflection of the cylindrical aft-body. As well, because we know that there is vertical pressure gradient and rotational flow, the deflection is actually an effective angle that would result in the given pressure rise. In the general case of flat-plate flow it is a good assumption that the compression is only due the displacement thickness growth \({\hbox {d}} \delta ^* / {\hbox {d}}x\). Here we do not specify that this is the specific viscous–inviscid mechanism. Therefore:

$$\begin{aligned} \displaystyle \frac{\sqrt{M_\mathrm{e,o}^2-1}}{\gamma M_\mathrm{e,o}^2} \frac{\Delta p}{p}=\Delta \varphi _{ eff } + \Delta \alpha , \end{aligned}$$

where \(\Delta \varphi _{ eff } \) is the effective angle change due to viscous–inviscid interaction. \(\Delta \alpha \) is the angle change due to the surface deflection of the cylinder. If we assume that \(\Delta \varphi _{ eff } \) scales with \(\delta _\mathrm{o}^*/L_{ sep }\), and \(\Delta \alpha \) scales with the angular length of the interaction \(\theta _{ sep }=L_{ sep }/r\) and introducing the same dimensionless variables as the previous step, we can get the following function:

$$\begin{aligned} \displaystyle \frac{p\left( \bar{x}\right) -p\left( \bar{x}_\mathrm{o}\right) }{q_\mathrm{o}}=\frac{2}{\sqrt{M_\mathrm{e,o}^2-1}}\left[ \frac{\delta _\mathrm{o}^*}{L_{ sep }}f_2\left( \bar{x}\right) +\theta _{ sep }f_3\left( \bar{x}\right) \right] \end{aligned}$$

The function \(f_2\left( \bar{x}\right) \) is the dimensionless effective angle change due to viscous–inviscid interaction. In the flat-plate case this can be assumed to be equal to \({\hbox {d}}\bar{\delta _\mathrm{o}^*}/{\hbox {d}}\bar{x}\). The function \(f_3\left( \bar{x}\right) \) is the dimensionless angle change due to the cylinder angle. Multiplying (18) and (23) and taking the square root we get the following:

$$\begin{aligned} \frac{p\left( \bar{x}\right) -p\left( \bar{x}_\mathrm{o}\right) }{q_\mathrm{o}}= & {} \sqrt{\frac{2C_{fo}}{\left( M_\mathrm{e,o}^2-1\right) ^{1/2}}}\nonumber \\&\left[ f_1\left( \bar{x}\right) f_2\left( \bar{x}\right) +\frac{L_{ sep }^2}{\delta _\mathrm{o}^*r}f_1\left( \bar{x}\right) f_3\left( \bar{x}\right) \right] ^{0.5}\nonumber \\ \end{aligned}$$


$$\begin{aligned} \displaystyle \frac{p\left( \bar{x}\right) -p\left( \bar{x}_\mathrm{o}\right) }{q_\mathrm{o}}=F^*\left( \bar{x}\right) \sqrt{\frac{2C_{fo}}{\left( M_\mathrm{e,o}^2-1\right) ^{1/2}}} \end{aligned}$$

The above equation is in the same form as the free-interaction theory equation from Chapman [13]. However, the interaction parameter is denoted \(F^*\left( \bar{x}\right) \) because it incorporates both the effect of the geometry and the free-interaction. This equation would also be appropriate for a geometry other than a cylinder provided the radius of curvature is relatively constant throughout the interaction region. Equation 24 can be rearranged for the free-interaction parameter \(F\left( \bar{x}\right) =\sqrt{f_1\left( \bar{x}\right) f_2\left( \bar{x}\right) }\) to give:

$$\begin{aligned} \displaystyle F\left( \bar{x}\right)= & {} \sqrt{f_1\left( \bar{x}\right) f_2\left( \bar{x}\right) }\nonumber \\= & {} \left[ \left( \frac{p\left( \bar{x}\right) -p\left( \bar{x}_\mathrm{o}\right) }{q_\mathrm{o}}\right) ^2\frac{\sqrt{M_\mathrm{e,o}^2-1}}{2C_{fo}}-\frac{L_{ sep }^2}{\delta _\mathrm{o}^*r}f_1\left( \bar{x}\right) f_3\left( \bar{x}\right) \right] ^{0.5}\nonumber \\ \end{aligned}$$

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hinman, W.S., Johansen, C.T. Interaction theory of hypersonic laminar near-wake flow behind an adiabatic circular cylinder. Shock Waves 26, 717–727 (2016).

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • Interaction theory
  • Hypersonic laminar near-wake
  • Computational fluid dynamics
  • Lip separation shock
  • Viscous–inviscid interaction