Skip to main content
Log in

Numerical simulation of a compressible vortex–wall interaction

  • Original Article
  • Published:
Shock Waves Aims and scope Submit manuscript

Abstract

The wall interaction of isolated compressible vortices generated from a short driver section shock tube has been simulated numerically by solving the Navier–Stokes equations in axisymmetric form. The dynamics of shock-free (incident shock Mach number \(M = 1.36\)) and shock-embedded \((M = 1.57)\) compressible vortices near the wall has been studied in detail. The AUSM+ scheme with a fifth-order upwind interpolation formula is used for the convective fluxes. Time integration is performed using a low dissipative and dispersive fourth-order six-stage Runge–Kutta scheme. The evolution of primary and wall vortices has been shown using the velocity field, vorticity field, and numerical schlierens. The vortex impingement, shocklets, wall vortices, and their lift-off are clearly identified from the wall pressure time history. It has been observed that the maximum vorticity of the wall vortices reaches close to 30 % of the primary vortex for \(M = 1.36\) and it reaches up to 60 % for \(M = 1.57\). The net pressure force on the wall due to incident shock impingement is dominant compared to the compressible vortex impingement and their evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Abbreviations

M :

Mach number of the incident shock

t :

Time; \(t = 0\) represents incident shock at shock tube exit

D :

Inner diameter of the shock tube (64 mm)

x :

Distance from the shock tube exit to wall (300 mm)

y :

Perpendicular distance from the symmetry line

PR :

Pressure ratio between the driver and driven sections

CRVR:

Counter rotating vortex ring

R :

Radius of the computational domain (640 mm)

References

  1. Hornung, H., Elsenaar, A.: Detailed measurements in the transonic vertical flow over a delta wing. Fluid Dyn. Res. 3, 381–386 (1988)

    Article  Google Scholar 

  2. Schiavetta, L.A., Boelens, O.J., Crippa, S., Cummings, R.M., Fritz, W., Badcock, K.J.: Shock effects on delta wing vortex breakdown. J. Aircr. 46(3), 903–914 (2009)

    Article  Google Scholar 

  3. Elder, F.K., Hass, N.: Experimental study of the formation of a vortex ring at the open end of a cylindrical shock tube. J. Appl. Phys. 23, 1065–1069 (1952)

    Article  Google Scholar 

  4. Minota, T., Nishida, M., Lee, M.G.: Shock formation by compressible vortex ring impinging on a wall. Fluid Dyn. Res. 21, 139–157 (1997)

    Article  Google Scholar 

  5. Kontis, K., An, R., Edwards, J.A.: Compressible vortex ring studies with a number of generic body configurations. AIAA J. 44, 2962–2978 (2006)

    Article  Google Scholar 

  6. Kontis, K., An, R., Zare-Behtash, H., Kounadis, D.: Head-on collision of shock wave induced vortices with solid and perforated walls. Phys. Fluids 20, 016104 (2008)

    Article  MATH  Google Scholar 

  7. Murugan, T., Das, D.: Characteristics of counter-rotating vortex rings formed ahead of a compressible vortex ring. Exp. Fluids 49, 1247–1261 (2010)

    Article  Google Scholar 

  8. Murugan, T., Das, D., Jain, M.: On the collision of compressible vortex ring with wall. J. Vis. 11, 277 (2008)

    Article  Google Scholar 

  9. Murugan, T., Das, D.: Experimental study on a compressible vortex ring in collision with a wall. J. Vis. 15, 321–332 (2012)

    Article  Google Scholar 

  10. Mariani, R., Kontis, K., Gongora-Orozco, N.: Head on collisions of compressible vortex rings on a smooth solid surface: effects of surface distance variation. Shock Waves 23, 381–398 (2013)

    Article  Google Scholar 

  11. Mariani, R., Quinn, M.K., Kontis, K., Marraffa, L.: Shock-free compressible vortex rings impinging on a stationary surface: effects of surface angle variation. Exp. Therm. Fluid Sci. 47, 126–142 (2013)

    Article  Google Scholar 

  12. Liou, M.-S.: A sequel to AUSM: AUSM+, 1996. J. Comput. Phys. 129, 364–382 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  13. Murugan, T., De, S., Dora, C.L., Das, D.: Numerical simulation and PIV study of compressible vortex ring evolution. Shock Waves 22(1), 69–83 (2012)

    Article  Google Scholar 

  14. Dora, C.L., Murugan, T., De, S., Das, D.: Role of slipstream instability in formation of counter rotating vortex rings ahead of a compressible vortex ring. J. Fluid Mech. 753, 29–48 (2014)

    Article  Google Scholar 

  15. Ishii, R., Fujimoto, H., Hatta, N., Umeda, Y.: Experimental and numerical analysis of circular pulse jets. J. Fluid Mech. 392, 129–153 (1999)

    Article  MATH  Google Scholar 

  16. Arakeri, J.H., Das, D., Krothapalli, A., Lourenco, L.: Vortex ring formation at the open end of a shock tube: a PIV study. Phys. Fluids 30, 1008–1019 (2004)

    Article  MATH  Google Scholar 

  17. Murugan, T., De, S., Dora, C.L., Das, D., Prem Kumar, P.: A study of the counter rotating vortex rings interacting with the primary vortex ring in shock tube generated flows. Fluid Dyn. Res. 45, 025506 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  18. De, S., Murugan, T.: Numerical simulation of shock tube generated vortex: effect of numerics. Int. J. Comput. Fluid Dyn. 25(6), 345–354 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  19. Calvo, M., Franco, J.M., Rández, L.: A new minimum storage Runge–Kutta scheme for computational acoustics. J. Comput. Phys. 201, 1–12 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  20. Kim, K.H., Kim, C.: Accurate, efficient and monotonic numerical methods for multi-dimensional compressible flows. Part II: multi-dimensional limiting process. J. Comput. Phys. 208, 570–615 (2005)

    Article  MATH  Google Scholar 

  21. Drikakis, D.: Advances in turbulent flow computations using high resolution methods. Prog. Aerosp. Sci. 39, 405–424 (2003)

    Article  Google Scholar 

  22. Hahn, M., Drikakis, D.: Assessment of large eddy simulation of internal separated flows. J. Fluids Eng. 371(7), 071201 (2009)

    Article  Google Scholar 

  23. Poinsot, P.J., Lele, S.K.: Boundary conditions for direct simulations of compressible viscous flows. J. Comput. Phys. 101, 104–129 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  24. Sun, M., Takayama, K.: A note on numerical simulation of vortical structures in shock diffraction. Shock Waves 13, 25–32 (2003)

    Article  MATH  Google Scholar 

  25. Chen, Z., Yi, S.H., Tian, L.F., He, L., Zhu, Y.Z.: Flow visualization of supersonic laminar flow over a backward-facing step via NPLS. Shock Waves 23, 299–306 (2013)

    Article  Google Scholar 

  26. Murugan, T., Das, D.: On evolution and acoustic characteristics of compressible vortex ring. Int. J. Aeroacoust. 7, 199–222 (2008)

    Article  Google Scholar 

  27. Halder, P., De, S., Sinhamahapatra, K.P., Singh, N.: Numerical simulation of shock–vortex interaction in Schardin’s problem. Shock Waves 23, 495–504 (2013)

  28. Murugan, T.: Flow and acoustic characteristics of high mach number vortex rings during evolution and wall-interaction: an experimental investigation. Ph.D. Thesis, Indian Institute of Technology, Kanpur (2008)

  29. Murugan, T., Das, D.: Characteristics of counter-rotating vortex rings formed ahead of a compressible vortex ring. Exp. Fluids 49, 1247–1261 (2010)

    Article  Google Scholar 

  30. Sun, M., Takayama, K.: Vorticity production in shock diffraction. J. Fluid Mech. 478, 237–256 (2003)

  31. Brouillette, M., Hebert, C.: Propagation and interaction of shock generated vortices. Fluid Dyn. Res. 21, 159–169 (1997)

    Article  Google Scholar 

  32. Naitoh, T., Banno, O., Yamada, H.: Longitudinal vortex structure in the flow field produced by a vortex ring impinging on a flat plate. Fluid Dyn. Res. 28, 61–74 (2001)

    Article  Google Scholar 

  33. Obermeier, F.: On a new representation of aeroacoustics representation of aeroacoustic source distribution. I. General theory. Acustica 42, 56–61 (1979)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge their access to the High Performance Computing Facility at CSIR-CMERI, Durgapur, for providing the necessary computational resources. The authors would like to thank the reviewers for their valuable comments to enhance the quality of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Murugan.

Additional information

Communicated by F. Lu and A. Higgins.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Murugan, T., De, S., Sreevatsa, A. et al. Numerical simulation of a compressible vortex–wall interaction. Shock Waves 26, 311–326 (2016). https://doi.org/10.1007/s00193-015-0611-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00193-015-0611-2

Keywords

Navigation