Shock Waves

, Volume 26, Issue 2, pp 141–160 | Cite as

Set-valued solutions for non-ideal detonation

  • R. Semenko
  • L. M. Faria
  • A. R. Kasimov
  • B. S. Ermolaev
Original Article

Abstract

The existence and structure of a steady-state gaseous detonation propagating in a packed bed of solid inert particles are analyzed in the one-dimensional approximation by taking into consideration frictional and heat losses between the gas and the particles. A new formulation of the governing equations is introduced that eliminates the difficulties with numerical integration across the sonic singularity in the reactive Euler equations. With the new algorithm, we find that when the sonic point disappears from the flow, there exists a one-parameter family of solutions parameterized by either pressure or temperature at the end of the reaction zone. These solutions (termed “set-valued” here) correspond to a continuous spectrum of the eigenvalue problem that determines the detonation velocity as a function of a loss factor.

Keywords

Gaseous detonation Heat and momentum losses Velocity deficit 

Notes

Acknowledgments

The research reported in this publication was supported by the King Abdullah University of Science and Technology (KAUST).

References

  1. 1.
    Bdzil, J.B., Stewart, D.S.: Theory of detonation shock dynamics. In: Shock Waves Science and Technology Library, vol. 6, pp 373–453. Springer, New York (2012)Google Scholar
  2. 2.
    Brailovsky, I., Kagan, L., Sivashinsky, G.: Combustion waves in hydraulically resisted systems. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 370(1960), 625–646 (2012)CrossRefMATHGoogle Scholar
  3. 3.
    Brailovsky, I., Sivashinsky, G.: Hydraulic resistance and multiplicity of detonation regimes. Combust. Flame 122(1), 130–138 (2000)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Brailovsky, I., Sivashinsky, G.: Effects of momentum and heat losses on the multiplicity of detonation regimes. Combust. Flame 128(1), 191–196 (2002)CrossRefGoogle Scholar
  5. 5.
    Brushlinski, K.V., Kazhdan, Y.M.: On self-similar solutions of certain problems of gasdynamics. Uspekhi Matematicheskikh Nauk 18(2), 3–23 (1963) (in Russian) Google Scholar
  6. 6.
    Dionne, J.P., Ng, H.D., Lee, J.H.S.: Transient development of friction-induced low-velocity detonations. Proc. Combust. Inst. 28(1), 645–651 (2000)CrossRefGoogle Scholar
  7. 7.
    Döring, W.: Über den Detonationvorgang in Gasen. Annalen der Physik 43(6/7), 421–428 (1943)CrossRefGoogle Scholar
  8. 8.
    Ermolaev, B.S., Khasainov, B.A., Sleptsov, K.A.: Numerical simulation of modes of combustion and detonation of hydrogen-air mixtures in porous medium in the framework of the mechanics of two-phase reaction mediums. Russ. J. Phys. Chem. B 5, 1007–1018 (2011)CrossRefGoogle Scholar
  9. 9.
    Eyring, H., Powell, R.E., Duffy, G.H., Parlin, R.B.: The stability of detonation. Chem. Rev. 45, 69–181 (1949)CrossRefGoogle Scholar
  10. 10.
    Faria, L.M., Kasimov, A.R.: Qualitative modeling of the dynamics of detonations with losses. Proc. Combust. Inst. 35, 2015–2023 (2015)CrossRefGoogle Scholar
  11. 11.
    Fickett, W., Davis, W.C.: Detonation. University of California Press, Berkeley (1979)Google Scholar
  12. 12.
    Goldshtik, M.A.: Transfer processes in granular layer. Institute of Thermophysics of the Siberian Branch of the USSR Academy of Science, Novosibirsk (1984)Google Scholar
  13. 13.
    Higgins A.J.: Steady one-dimensional detonations. In: Shock Waves Science and Technology Library, vol. 6, pp. 33–105. Springer, New York (2012)Google Scholar
  14. 14.
    Lee, J.H.S.: The Detonation Phenomenon. Cambridge University Press, Cambridge (2008)CrossRefGoogle Scholar
  15. 15.
    Lee, J.H.S., Knystautas, R., Chan, C.K.: Turbulent flame propagation in obstacle-filled tubes. In: Symposium (International) on Combustion, vol. 20, pp. 1663–1672. Elsevier, Amsterdam (1985)Google Scholar
  16. 16.
    Lyamin, G.A., Mitrofanov, V.V., Pinaev, A.V., Subbotin, V.A.: Propagation of gas explosion in channels with uneven walls and in porous media. In: Dynamic Structure of Detonation in Gaseous and Dispersed Media, pp. 51–75. Kluwer Academ., Netherlands (1991)Google Scholar
  17. 17.
    Lyamin, G.A., Pinaev, A.V.: Combustion regimes for gases in an inert porous material. Combust. Explosion Shock Waves 22(5), 553–558 (1986)Google Scholar
  18. 18.
    Marble, F.E.: Dynamics of dusty gases. Annu. Rev. Fluid Mech. 2(1), 397–446 (1970)CrossRefGoogle Scholar
  19. 19.
    Nigmatulin, R.I.: Dynamics of Multi-Phase Media. Nauka, Moscow (1987). (Dinamika mnogofaznykh sred, in Russian)Google Scholar
  20. 20.
    Pinaev, A.V., Lyamin, G.A.: Fundamental laws governing subsonic and detonating gas combustion in inert porous media. Combust. Explosion Shock Waves 25(4), 448–458 (1989)CrossRefGoogle Scholar
  21. 21.
    Stewart, D.S., Kasimov, A.R.: Theory of detonation with an embedded sonic locus. SIAM J. Appl. Math. 66(2), 384–407 (2005)MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    von Neumann, J.: Theory of detonation waves. Office of Scientific Research and Development, Report 549. National Defense Research Committee Div. B (1942)Google Scholar
  23. 23.
    Wood, W.W., Kirkwood, J.G.: Diameter effect in condensed explosives. The relation between velocity and radius of curvature in the detonation wave. J. Chem. Phys. 22, 1920–1924 (1954)CrossRefGoogle Scholar
  24. 24.
    Zel’dovich, Y.B.: On the theory of propagation of detonation in gaseous systems. J. Exp. Theor. Phys. 10(5), 542–569 (1940)Google Scholar
  25. 25.
    Zel’dovich, Y.B., Borisov, A.A., Gel’fand, B.E., Frolov, S.M., Mailkov, A.E.: Nonideal detonation waves in rough tubes. Dyn. Explosions Prog. Astronaut. Aeronaut. 114, 211–231 (1988)Google Scholar
  26. 26.
    Zel’dovich, Y.B., Gel’fand, B.E., Kazhdan, Y.M., Frolov, S.M.: Detonation propagation in a rough tube taking account of deceleration and heat transfer. Combust. Explosion Shock Waves 23(3), 342–349 (1987)CrossRefGoogle Scholar
  27. 27.
    Zel’dovich, Y.B., Kompaneets, A.S.: Theory of Detonation. Academic Press, New York (1960)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • R. Semenko
    • 1
    • 3
  • L. M. Faria
    • 1
    • 4
  • A. R. Kasimov
    • 1
  • B. S. Ermolaev
    • 2
  1. 1.Applied Mathematics and Computational ScienceKing Abdullah University of Science and TechnologyThuwalSaudi Arabia
  2. 2.Semenov Institute of Chemical PhysicsRussian Academy of SciencesMoscowRussia
  3. 3.Department of Mechanics and MathematicsNovosibirsk State UniversityNovosibirskRussia
  4. 4.Department of MathematicsMassachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations