Skip to main content
Log in

Detonation diffraction in combustible high-speed flows

  • Original Article
  • Published:
Shock Waves Aims and scope Submit manuscript

Abstract

Detonation propagating in a T-shaped tube with quiescent and moving hydrogen/oxygen/argon mixtures is numerically examined based on the Euler equations with detailed finite-rate chemistry using the fifth-order weighted essentially non-oscillatory scheme. When diffracted in a quiescent combustible mixture, the detonation wave propagating from the bottom of the T-shaped tube is influenced by the corner rarefaction waves and decays into a non-reacting shock. Subsequently, the decoupled shock reflects irregularly from the top wall. Through several reflections back and forth between the top and bottom walls, a planar detonation is finally re-established. When the combustible mixture in the horizontal part flows from the left to the right, the detonation products ejected from the vertical tube will retard the flow, generating a compression flow upstream and a rarefaction flow downstream. The disturbed detonation on the left side is stronger than that on the right side. The final planar detonation in the upstream direction propagates faster than the Chapman–Jouguet (CJ) detonation with compressed, fine cellular structures, whereas the detonation in the downstream direction propagates more slowly than the CJ detonation with elongated, coarse cellular structures. The details of the transient behavior of diffracting detonation in high-speed flows are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Kailasanath, K.: Review of propulsion application of detonation waves. AIAA J. 38(9), 1698–1708 (2000)

    Article  Google Scholar 

  2. McKenna, W.W.: Interaction between detonation waves and flowfields. AIAA J. 5(5), 868–873 (1967)

    Article  Google Scholar 

  3. Vasil’ev, A.A., Zvegintsev, V.I., Nalivaichenko, D.G.: Detonation waves in reactive supersonic flow. Combust. Explos. Shock Waves 42, 568–581 (2006)

    Article  Google Scholar 

  4. Yi, T.H., Wilson, D.R., Lu, F.K.: Numerical study of unsteady detonation wave propagation in a supersonic combustion chamber. In: Proceedings of the 25th International Symposium on Shock Waves, paper no. 10041 (2004)

  5. Ishii, K., Kataoka, H., Kojima, T.: Initiation and propagation of detonation waves in combustible high speed flows. Proc. Combust. Inst. 32, 2323–2330 (2009)

    Article  Google Scholar 

  6. Zeldovich, IaB, Kogarko, S.M., Simonov, N.N.: An experimental investigation of spherical detonation in gases. Sov. Phys. Tech. Phys. 1(8), 1689–1713 (1956)

    Google Scholar 

  7. Soloukhin, R.I., Ragland, K.W.: Ignition processes in expanding detonations. Combust. Flame 13, 295–302 (1969)

    Article  Google Scholar 

  8. Edwards, D.H., Thomas, G.O., Nettleton, M.A.: The diffraction of a planar detonation wave at an abrupt area change. J. Fluid Mech. 95, 79–96 (1979)

    Article  Google Scholar 

  9. Edwards, D.H., Thomas, G.O., Nettleton, M.A.: Diffraction of a planar detonation in various fuel–oxygen mixtures at an area change. Prog. Astronaut. Aeronaut. 76, 341–357 (1981)

    Google Scholar 

  10. Moen, I.O., Donato, M., Knystautas, R., Lee, J.H.: The influence of confinement on the propagation of detonations near the detonability limits. Proc. Combust. Inst. 18, 1615–1622 (1981)

    Article  Google Scholar 

  11. Knystautas, R., Lee, J.H., Guirao, C.M.: The critical tube diameter for detonation failure in hydrocarbon–air mixtures. Combust. Flame 48, 63–83 (1982)

    Article  Google Scholar 

  12. Murray, S.B., Lee, J.H.: On the transformation of planar detonation to cylindrical detonation. Combust. Flame 52, 269–289 (1983)

    Article  Google Scholar 

  13. Pintgen, F., Shepherd, J.E.: Detonation diffraction in gases. Combust. Flame 156, 665–677 (2009)

    Article  Google Scholar 

  14. Jiang, G.S., Shu, C.W.: Efficient implementation of weighted ENO schemes. J. Comput. Phys. 126, 202–228 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  15. Zhong, X.L.: Additive semi-implicit Runge–Kutta methods for computing high-speed nonequilibrium reactive flows. J. Comput. Phys. 128, 19–31 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  16. Oran, E.S., Young, T.R., Boris, J.P., Cohen, A.: Weak and strong ignition. I. Numerical simulations of shock tube experiments. Combust. Flame 48, 135–148 (1982)

    Article  Google Scholar 

  17. Pan, Z.H., Fan, B.C., Zhang, X.D., Gui, M.Y., Dong, G.: Wavelet pattern and self-sustained mechanism of gaseous detonation rotating in a coaxial cylinder. Combust. Flame 158, 2220–2228 (2011)

    Article  Google Scholar 

  18. Zhang, X.D., Fan, B.C., Pan, Z.H., Gui, M.Y.: Experimental and numerical study on detonation propagation in an annular cylinder. Combust. Sci. Technol. 184, 1708–1717 (2012)

    Article  Google Scholar 

  19. Mazaheri, K., Mahmoudi, Y., Radulescu, M.I.: Diffusion and hydrodynamic instabilities in gaseous detonations. Combust. Flame 159, 2138–2154 (2012)

  20. Skews, B.W.: The shape of a diffracting shock wave. J. Fluid Mech. 29, 297–304 (1967)

    Article  Google Scholar 

  21. Gui, M.Y., Fan, B.C.: Wavelet structure of wedge-induced oblique detonation waves. Combust. Sci. Technol. 184, 1456–1470 (2012)

    Article  Google Scholar 

  22. Smolinska, A., Khasainov, B., Virot, F., Desbordes, D., Presles, H.N., Vasil’ev, A.A., Trotsyuk, A.V., Fomin, P.A., Vasiliev, V.A.: Detonation diffraction from tube to space via frontal obstacle. In: Proceedings of the European Combustion Meeting, Vienna, HAL-00422468 (2009)

Download references

Acknowledgments

This work was supported by National Natural Science Foundation of China (No. 11202104), the opening project of State Key Laboratory of Explosion Science and Technology (Beijing Institute of Technology) (No. KFJJ13-3M) and Specialized Research Fund for the Doctoral Program of Higher Education (No. 20113219120036).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mingyue Gui.

Additional information

Communicated by S. Dorofeev.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gui, M., Fan, B. & Li, B. Detonation diffraction in combustible high-speed flows. Shock Waves 26, 169–180 (2016). https://doi.org/10.1007/s00193-015-0602-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00193-015-0602-3

Keywords

Navigation