Skip to main content
Log in

Structure of an oblique detonation wave induced by a wedge

  • Original Article
  • Published:
Shock Waves Aims and scope Submit manuscript

Abstract

The structure of an oblique detonation wave (ODW) induced by a wedge is investigated via numerical simulations and Rankine–Hugoniot analysis. The two-dimensional Euler equations coupled with a two-step chemical reaction model are solved. In the numerical results, four configurations of the Chapman–Jouguet (CJ) ODW reflection (overall Mach reflection, Mach reflection, regular reflection, and non-reflection) are observed to take place sequentially as the inflow Mach number increases. According to the numerical and analytical results, the change of the CJ ODW reflection configuration results from the interaction among the ODW, the CJ ODW, and the centered expansion wave.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

ODW:

Oblique detonation wave

OSW:

Oblique shock wave

CJ ODW:

Chapman–Jouguet oblique detonation wave (which locates at the end of the induction region)

CEW:

Centered expansion wave (which locates behind the CJ ODW)

RCEW:

Reflected expansion wave of the CEW

ROSW:

Reflected shock wave of the OSW

RCJ ODW:

Reflected shock wave of the CJ ODW

References

  1. Kailasanath, K.: Review of propulsion applications of detonation waves. AIAA J. 38(9), 1698–1708 (2000)

    Article  Google Scholar 

  2. Ma, F., Choi, J.-Y., Yang, V.: Propulsive performance of air breathing pulse detonation engines. J. Propuls. Power 22(6), 1188–1203 (2006)

    Article  Google Scholar 

  3. Dunlap, R., Brehm, R.L., Nicholls, J.A.: A preliminary study of the application of steady-state detonative combustion to a reaction engine. J. Jet Propuls. 28(7), 451–456 (1958)

    Article  Google Scholar 

  4. Pratt, D.T., Humphrey, J.W., Glenn, D.E.: Morphology of standing oblique detonation waves. J. Propuls. Power 7(5), 837–845 (1991)

    Article  Google Scholar 

  5. Ghorbanian, K., Sterling, J.D.: Influence of formation processes on oblique detonation wave stabilization. J. Propuls. Power 12(3), 509–517 (1996)

    Article  Google Scholar 

  6. Li, C., Kailasanath, K., Oran, E.S.: Detonation structures behind oblique shocks. Phys. Fluids 6(4), 1600–1611 (1994)

    Article  MATH  Google Scholar 

  7. Choi, J.-Y., Kim, D.-W., Jeung, I.-S., Ma, F., Yang, V.: Cell-like structure of unstable oblique detonation wave from high-resolution numerical simulation. Proc. Combust. Inst. 31(2), 2473–2480 (2007)

    Article  Google Scholar 

  8. Wang, A.-F., Zhao, W., Jiang, Z.-L.: Cellular structure of oblique detonation and propagation of transverse wave. Explos. Shock Waves 30(4), 349–354 (2010)

  9. Gui, M.-Y., Fan, B.-C., Dong, G.: Periodic oscillation and fine structure of wedge-induced oblique detonation waves. Acta Mech. Sin. 27(6), 922–928 (2011)

    Article  MATH  Google Scholar 

  10. Verreault, J., Higgins, A.J., Stowe, R.A.: Formation of transverse waves in oblique detonations. Proc. Combust. Inst. 34(2), 1913–1920 (2013)

    Article  Google Scholar 

  11. Verreault, J., Higgins, A.J.: Initiation of detonation by conical projectiles. Proc. Combust. Inst. 33, 2311–2318 (2011)

    Article  Google Scholar 

  12. Lefebvre, M.H., Fujiwara, T.: Numerical modeling of combustion processes induced by a supersonic conical blunt body. Combust. Flame 100, 85–93 (1995)

    Article  Google Scholar 

  13. Liu, Y., Wu, D., Yao, S.-B., Wang, J.-P.: Analytical and numerical investigations of wedge-induced oblique detonation waves at low inflow Mach number. Combust. Sci. Technol. 187(6), 843–856 (2015)

    Article  Google Scholar 

  14. Dabora, E. K., Broda, J.-C.: Standing normal detonations and oblique detonations for propulsion. AIAA paper 93–2325 (1993)

  15. Viguier, C., Gourara, A., Desbordes, D.: Three-dimensional structure of stabilization of oblique detonation wave in hypersonic flow. Proc. Combust. Inst. 27(2), 2207–2214 (1998)

    Article  Google Scholar 

  16. Maeda, S., Kasahara, J., Matsuo, A.: Oblique detonation wave stability around a spherical projectile by a high time resolution optical observation. Combust. Flame 159, 887–896 (2012)

    Article  Google Scholar 

  17. Ashford, S.A., Emanuel, G.: Wave angle for oblique detonation waves. Shock Waves 3, 327–329 (1994)

    Article  MATH  Google Scholar 

  18. Verreault, J., Higgins, A.J., Stowe, R.A.: Formation and structure of steady oblique and conical detonation waves. AIAA J. 50(8), 1766–1772 (2012)

    Article  Google Scholar 

  19. Teng, H.-H., Zhao, W., Jiang, Z.-L.: A novel oblique detonation structure and its stability. Chin. Phys. Lett. 24(7), 1985–1988 (2007)

    Article  Google Scholar 

  20. Li, C., Kailasanath, K., Oran, E. S.: Effects of boundary layers on oblique-detonation structures. In: 31st Aerospace Sciences Meeting & Exhibit, Reno, Nevada, AIAA-93-0450 (1993)

  21. Kamel, M. R., Morris, C. I., Stouklov, I. G., Hanson, R. K.: PLIF imaging of hypersonic reactive flow around blunt bodies. In: 26th International Symposium on Combustion, Combustion Institute, Pittsburg, pp. 2909–2915 (1996)

  22. Korobeinikov, V.P., Levin, V.A., Markov, V.V., Chernyi, G.G.: Propagation of blast waves in a combustible gas. Astronaut. Acta 17(4–5), 529–537 (1972)

    Google Scholar 

  23. Liu, Y.-F.: Numerical Studies on Detonation and Pulse Detonation Engines. Peking University, Beijing (2004)

    Google Scholar 

  24. Steger, J.L., Warming, R.F.: Flux vector splitting of the inviscid gasdynamic equations with application to finite-difference methods. J. Comput. Phys. 40(2), 263–293 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  25. Balsara, D.S., Shu, C.-W.: Monotonicity preserving weighted essentially non-oscillatory schemes with increasingly high order of accuracy. J. Comput. Phys. 160(2), 405–452 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  26. Ben-Dor, G.: Shock Wave Reflection Phenomena, 2nd edn. Springer, New York (2007)

    MATH  Google Scholar 

  27. da Silva, L.F.F., Deshaies, B.: Stabilization of an oblique detonation wave by a wedge: a parametric numerical study. Combust. Flame 121, 152–166 (2000)

    Article  Google Scholar 

Download references

Acknowledgments

This work was sponsored by the National Natural Science Foundation of China (No. 91441110).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Liu.

Additional information

Communicated by A. Sasoh and A. Higgins.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Liu, YS., Wu, D. et al. Structure of an oblique detonation wave induced by a wedge. Shock Waves 26, 161–168 (2016). https://doi.org/10.1007/s00193-015-0600-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00193-015-0600-5

Keywords

Navigation