Shock Waves

, Volume 25, Issue 6, pp 651–665 | Cite as

Strategies for obtaining long constant-pressure test times in shock tubes

  • M. F. Campbell
  • T. Parise
  • A. M. Tulgestke
  • R. M. Spearrin
  • D. F. Davidson
  • R. K. Hanson
Original Article


Several techniques have been developed for obtaining long, constant-pressure test times in reflected shock wave experiments in a shock tube, including the use of driver inserts, driver gas tailoring, helium gas diaphragm interfaces, driver extensions, and staged driver gas filling. These techniques are detailed here, including discussion on the most recent strategy, staged driver gas filling. Experiments indicate that this staged filling strategy increases available test time by roughly 20 % relative to single-stage filling of tailored driver gas mixtures, while simultaneously reducing the helium required per shock by up to 85 %. This filling scheme involves firstly mixing a tailored helium–nitrogen mixture in the driver section as in conventional driver filling and, secondly, backfilling a low-speed-of-sound gas such as nitrogen or carbon dioxide from a port close to the end cap of the driver section. Using this staged driver gas filling, in addition to the other techniques listed above, post-reflected shock test times of up to 0.102 s (102 ms) at 524 K and 1.6 atm have been obtained. Spectroscopically based temperature measurements in non-reactive mixtures have confirmed that temperature and pressure conditions remain constant throughout the length of these long test duration trials. Finally, these strategies have been used to measure low-temperature n-heptane ignition delay times.


Long test time Driver insert Driver gas tailoring  Staged driver gas filling Reflected shock Shock tube 



This work was supported by the Army Research Office, with Dr. Ralph Anthenien as technical monitor. M.F.C. was supported by the Division of Chemical Sciences, Geosciences, and Biosciences, the Office of Basic Energy Sciences (BES), the US Department of Energy (DOE). Also, during a portion of this work, M.F.C. was supported by a National Defense Science and Engineering Graduate (NDSEG) Fellowship, 32 CFR 168a. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the US Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000. The authors wish to acknowledge Andrew Lawson and Kaley Boyce for their assistance in the configuration of the shock tube, and further wish to thank the technicians in the Stanford University plumbing shop for assistance in configuration of driver inserts.


  1. 1.
    Ciezki, H.K., Adomeit, G.: Shock-tube investigation of self-ignition of \(n\)-heptane-air mixtures under engine relevant conditions. Combust. Flame 93(4), 421–433 (1993)CrossRefGoogle Scholar
  2. 2.
    Shen, H.-P.S., Vanderover, J., Oehlschlaeger, M.A.: A shock tube study of the auto-ignition of toluene/air mixtures at high pressures. Proc. Combust. Inst. 32(1), 165–172 (2009)CrossRefGoogle Scholar
  3. 3.
    Amadio, A., Crofton, M., Petersen, E.: Test-time extension behind reflected shock waves using \(\text{ CO }_{2}\)–He and \(\text{ C }_{3}\text{ H }_{8}\)–He driver mixtures. Shock Waves 16, 157–165 (2006)CrossRefGoogle Scholar
  4. 4.
    Hong, Z., Davidson, D., Hanson, R.: Contact surface tailoring condition for shock tubes with different driver and driven section diameters. Shock Waves 19, 331–336 (2009)CrossRefGoogle Scholar
  5. 5.
    Dumitrescu, L.Z.: An attenuation-free shock tube. Phys. Fluids 15(1), 207–209 (1972)CrossRefGoogle Scholar
  6. 6.
    Stotz, I., Lamanna, G., Hettrich, H., Weigand, B., Steelant, J.: Design of a double diaphragm shock tube for fluid disintegration studies. Rev. Sci. Instrum. 79(12), 125106 (2008)CrossRefGoogle Scholar
  7. 7.
    Hong, Z., Pang, G., Vasu, S., Davidson, D., Hanson, R.: The use of driver inserts to reduce non-ideal pressure variations behind reflected shock waves. Shock Waves 19, 113–123 (2009)CrossRefGoogle Scholar
  8. 8.
    Rossmann, T., Mungal, M.G., Hanson, R.K.: A New shock tunnel facility for high compressibility mixing layer studies. In: 37th AIAA Aerospace Sciences Meeting and Exhibit, pp. 99–0415. American Institute of Aeronautics and Astronautics, Reno (1999) (Paper Number: AIAA 99-0415)Google Scholar
  9. 9.
    Pang, G.A., Davidson, D.F., Hanson, R.K.: Experimental study and modeling of shock tube ignition delay times for hydrogen-oxygen-argon mixtures at low temperatures. Proc. Combust. Inst. 32(1), 181–188 (2009)CrossRefGoogle Scholar
  10. 10.
    Lam, K.Y., Hong, Z., Davidson, D.F., Hanson, R.K.: Shock tube ignition delay time measurements in propane/\({\rm O}_{2}\)/argon mixtures at near-constant-volume conditions. Proc. Combust. Inst. 33(1), 251–258 (2011)CrossRefGoogle Scholar
  11. 11.
    Gates, S.D., McCartt, A.D., Jeffries, J.B., Hanson, R.K., Hokama, L.A., Mortelmans, K.E.: Extension of Bacillus endospore gas dynamic heating studies to multiple species and test conditions. J. Appl. Microbiol. 111(4), 925–931 (2011)CrossRefGoogle Scholar
  12. 12.
    Davidson, D., Hanson, R.: Recent advances in shock tube/laser diagnostic methods for improved chemical kinetics measurements. Shock Waves 19, 271–283 (2009)CrossRefGoogle Scholar
  13. 13.
    Hanson, R.K., Pang, G.A., Chakraborty, S., Ren, W., Wang, S., Davidson, D.F.: Constrained reaction volume approach for studying chemical kinetics behind reflected shock waves. Combust. Flame 160, 1550–1558 (2013)CrossRefGoogle Scholar
  14. 14.
    Zhu, Y., Davidson, D.F., Hanson, R.K.: 1-Butanol ignition delay times at low temperatures: an application of the constrained-reaction-volume strategy. Combust. Flame 161(3), 634–643 (2014)CrossRefGoogle Scholar
  15. 15.
    Campbell, M.F., Wang, S., Goldenstein, C.S., Spearrin, R.M., Tulgestke, A.M., Zaczek, L.T., Davidson, D.F., Hanson, R.K.: Constrained reaction volume shock tube study of \(n\)-heptane oxidation: ignition delay times and time-histories of multiple species and temperature. Proc. Combust. Inst. 35(1), 231–239 (2015)CrossRefGoogle Scholar
  16. 16.
    Hooker, W.J.: Testing time and contact-zone phenomena in shock-tube flows. Phys. Fluids 4(12), 1451–1463 (1961)zbMATHCrossRefGoogle Scholar
  17. 17.
    Polachek, H., Seeger, R.J.: On shock-wave phenomena; refraction of shock waves at a gaseous interface. Phys. Rev. 84(5), 922–929 (1951)zbMATHMathSciNetCrossRefGoogle Scholar
  18. 18.
    Frazier, C., Lamnaouer, M., Divo, E., Kassab, A., Petersen, E.: Effect of wall heat transfer on shock-tube test temperature at long times. Shock Waves 21(1), 1–17 (2011)CrossRefGoogle Scholar
  19. 19.
    Jacobs, P.A.: Quasi-one-dimensional modeling of a free-piston shock tunnel. Am. Inst. Aeronaut. Astronaut. J. 32(1), 137–145 (1994)CrossRefGoogle Scholar
  20. 20.
    Oakley, J.G., Bonazza, R.: xt.exe software. In: Wisconsin Shock Tube Laboratory (WiSTL), Madison, WI (2004)Google Scholar
  21. 21.
    Burcat, A., Ruscic, B.: Third millennium ideal gas and condensed phase thermochemical database for combustion with updates from active thermochemical tables. In: Argonne National Laboratory and Technion Israel Institute of Technology, Report number ANL-05/20 TAE 960 (2005)Google Scholar
  22. 22.
    Nishida, M.: Chapter 4.1—shock tubes and tunnels: facilities, instrumentation, and techniques. In: Ben-Dor, G., Igra, O., Elperin, T. (eds.) Handbook of Shock Waves, pp. 553–585. Academic Press, Burlington (2001)Google Scholar
  23. 23.
    Alpher, R.A., White, D.R.: Flow in shock tubes with area change at the diaphragm section. J. Fluid Mech. 3(5), 457–470 (1958)CrossRefGoogle Scholar
  24. 24.
    Davidson, D.F., Hanson, R.K.: Real gas corrections in shock tube studies at high pressures. Isr. J. Chem. 36, 321–326 (1996)CrossRefGoogle Scholar
  25. 25.
    Oehlschlaeger, M.A., Davidson, D.F., Jeffries, J.B.: Temperature measurement using ultraviolet laser absorption of carbon dioxide behind shock waves. Appl. Opt. 44(31), 6599–6605 (2005)CrossRefGoogle Scholar
  26. 26.
    Nuttall, W.J., Clarke, R.H., Glowacki, B.A.: Resources: stop squandering helium. Nature 485, 573–575 (2012)CrossRefGoogle Scholar
  27. 27.
    Lifshitz, A., Bauer, S.H., Resler Jr, E.L.: Studies with a single-pulse shock tube. I. The cis-trans isomerization of butene-2. J. Chem. Phys. 38(9), 2056–2063 (1963)CrossRefGoogle Scholar
  28. 28.
    Tsang, W.: Thermal decomposition of some tert-butyl compounds at elevated temperatures. J. Chem. Phys. 40(6), 1498–1505 (1964)CrossRefGoogle Scholar
  29. 29.
    Robinson, W.M.J.: Mass spectrometric studies of ionization precursors ahead of strong shock waves. Ph.D. Dissertation, California Institute of Technology (1969)Google Scholar
  30. 30.
    Spearrin, R.M., Ren, W., Jeffries, J.B., Hanson, R.K.: Multi-band infrared \({\rm CO}_{2}\) absorption sensor for sensitive temperature and species measurements in high-temperature gases. Appl. Phys. B 116(4), 855–865 (2014)CrossRefGoogle Scholar
  31. 31.
    Petersen, E.L., Hanson, R.K.: Nonideal effects behind reflected shock waves in a high-pressure shock tube. Shock Waves 10(6), 405–420 (2001)CrossRefGoogle Scholar
  32. 32.
    Petersen, E.L., Hanson, R.K.: Improved turbulent boundary-layer model for shock tubes. AIAA J. 41(7), 1314–1322 (2003)CrossRefGoogle Scholar
  33. 33.
    Petersen, E.L., Hanson, R.K.: Measurement of reflected-shock bifurcation over a wide range of gas composition and pressure. Shock Waves 15(5), 333–340 (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Combustion Research FacilitySandia National LaboratoryLivermoreUSA
  2. 2.Department of Mechanical EngineeringStanford UniversityStanfordUSA

Personalised recommendations