Shock Waves

, Volume 25, Issue 6, pp 635–650 | Cite as

Design of a fast diaphragmless shock tube driver

  • R. Mejia-Alvarez
  • B. Wilson
  • M. C. Leftwich
  • A. A. Martinez
  • K. P. Prestridge
Original Article

Abstract

In this paper, we developed a one-dimensional compressible flow model to study the behavior of various diaphragmless drivers numerically. We determined that the diameter ratio, \(\beta _{d}\), for the discharge orifice of the back chamber controls driver actuation. Driver performance is optimized by accelerating the barrier element before breaching to minimize the opening time of the driver. Our new two-body driver outperforms various designs and exhibits opening times comparable to those of aluminum burst diaphragms. Experimental results verify the effectiveness of the new driver and show that it closely follows the pressure-Mach curve for the ideal case. Planar laser-induced fluorescence images and pressure traces confirm the consistent formation of shock waves about 41 diameters from the driver.

Keyword

Diaphragmless shock tube 

References

  1. 1.
    Abe, T., Ogura, E., Funabiki, K.: Rupture-disk-less shock-tube with compression tube driven by free piston. Shock Waves 7(4), 205–209 (1997)CrossRefGoogle Scholar
  2. 2.
    Anderson Jr, J.D.: Modern Compressible Flow (with Historical Perspective), 3rd edn. McGraw-Hill, New York (2003)Google Scholar
  3. 3.
    Bartlett, J.W., Frost, C.: Reliability, repeatability and reproducibility: analysis of measurement errors in continuous variables. Ultrasound Obstet. Gynecol. 31(4), 466–475 (2008)CrossRefGoogle Scholar
  4. 4.
    Chapra, S.T., Canale, R.: Numerical Methods for Engineers: With Software and Programming Applications, 4th edn. McGraw-Hill, New York (2001)Google Scholar
  5. 5.
    Cunningham, R.G.: Orifice meters with supercritical compressible flow. Trans ASME 73, 625–638 (1951)Google Scholar
  6. 6.
    Downey, M.S., Cloete, T.J., Yates, A.D.B.: A rapid opening sleeve valve for a diaphragmless shock tube. Shock Waves 21(4), 315–319 (2011)CrossRefGoogle Scholar
  7. 7.
    Hariharan, M.S., Janardhanraj, S., Saravanan, S., Jagadeesh, G.: Diaphragmless shock wave generators for industrial applications of shock waves. Shock Waves 21(3), 301–306 (2010)CrossRefGoogle Scholar
  8. 8.
    Heufer, K.A., Olivier, H., Drumm, S., Murrenhoff, H.: A new fast acting valve for diaphragmless shock tubes. In: Kontis, K. (ed.) 28th International Symposium on Shock Waves, vol. 1, pp. 535–540. Springer, Manchester (2012)Google Scholar
  9. 9.
    Hosea, M.E., Shampine, L.F.: Analysis and implementation of TR-BDF2. Appl. Numer. Math. 20(1–2), 21–37 (1996)MATHMathSciNetCrossRefGoogle Scholar
  10. 10.
    Hosseini, S.H.R., Takayama, K.: Experimental study of toroidal shock wave focusing in a compact vertical annular diaphragmless shock tube. Shock Waves 20(1), 1–7 (2009)CrossRefGoogle Scholar
  11. 11.
    Hosseini, S.H.R., Onodera, O., Takayama, K.: Characteristics of an annular vertical diaphragmless shock tube. Shock Waves 10(3), 151–158 (2000)CrossRefGoogle Scholar
  12. 12.
    Hurst, S.M., Bauer, S.H.: A piston-actuated shock-tube, with laser-Schlieren diagnostics. Rev. Sci. Instrum. 64(5), 1342–1346 (1993)CrossRefGoogle Scholar
  13. 13.
    Ikui, T., Matsuo, K., Yamamoto, Y.: Fast-acting valves for use in shock tubes: part 1, construction and their characteristics. Bull. JSME 20(141), 337–342 (1977)CrossRefGoogle Scholar
  14. 14.
    Ikui, T., Matsuo, K., Yamamoto, Y.: Fast-acting valves for use in shock tubes: part 2, formation of shock waves. Bull. JSME 22(167), 693–699 (1979)Google Scholar
  15. 15.
    Kosing, O.E., Barbosa, F.J., Skews, B.W.: A new, friction controlled, piston actuated diaphragmless shock tube driver. Shock Waves 9(1), 69–72 (1999)Google Scholar
  16. 16.
    Matsui, H., Koshi, M., Oya, M., Tsuchiya, K.: Improvement of chemical kinetic data at high temperatures by piston actuated shock tube, excimer laser photolysis, and atomic resonance absorption spectrometry. Shock Waves 3(4), 287–292 (1994)CrossRefGoogle Scholar
  17. 17.
    Muirhead, J.C., Jones, W.A.: Shock wave valves. Rev. Sci. Instrum. 35(1), 119–120 (1964)CrossRefGoogle Scholar
  18. 18.
    Nguyen, T.T.N., Wilgeroth, J.M., Proud, W.G.: Controlling blast wave generation in a shock tube for biological applications. In: Journal of Physics: Conference Series, vols. 500, 142025, pp. 1–6 (2014)Google Scholar
  19. 19.
    Oguchi, H., Funabiki, K., Sato, S.: An experiment on interaction of shock wave with multiple-orifice plate by means of snap-action shock tube. In: Kamimoto, G, (ed.) Proceedings of the 10th International Shock Tube Symposium, pp. 386–391. Shock Tube Research Society, Kyoto (1975)Google Scholar
  20. 20.
    Rêgo, IdS, Ando, T., Misumi, K., Miyazaki, T., Nishiyori, S., Sato, K.N., Sakamoto, M., Kawasaki, S.: A model of piston sliding process for a double piston-actuated shock tube. J. Fluids. Eng. 130(4), 044501-1–044501-3 (2008a)Google Scholar
  21. 21.
    Rêgo Id, S., Sato, K.N., Kugimiya, S., Aoki, T., Miyoshi, Y., Ando, T., Goto, K., Sakamoto, M.: Development of a large diameter diaphragmless shock tube for gas-dynamic laser studies. Mater. Sci. Forum 566, 9–14 (2008b)Google Scholar
  22. 22.
    Takano, Y., Akamatsu, T.: A diaphragmless shock tube. J. Phys. E: Sci. Instrum. 17(8), 644–646 (1984)CrossRefGoogle Scholar
  23. 23.
    Thurber, M.C., Hanson, R.K.: Simultaneous imaging of temperature and mole fraction using acetone planar laser-induced fluorescence. Exp. Fluids 30(1), 93–101 (2001)CrossRefGoogle Scholar
  24. 24.
    Thurber, M.C., Grisch, F., Hanson, R.K.: Temperature imaging with single-and dual-wavelength acetone planar laser-induced fluorescence. Opt. Lett. 22(4), 251–253 (1997)CrossRefGoogle Scholar
  25. 25.
    Tranter, R.S., Giri, B.R.: A diaphragmless shock tube for high temperature kinetic studies. Rev. Sci. Instrum. 79(9), 1–6 (2008)CrossRefGoogle Scholar
  26. 26.
    Udagawa, S., Garen, W., Meyerer, B., Maeno, K.: Motion analysis of a diaphragmless driver section for a narrow channel shock tube. Shock Waves 18(5), 345–351 (2008)CrossRefGoogle Scholar
  27. 27.
    Yamauchi, M., Matsui, H., Koshi, M., Tanaka, K., Tamaki, S., Tanaka, H.: Shock tube studies on the radical emission spectra by use of an imaging spectrometer. Bunko Kenkyu (J. Spectrosc. Soc. Jpn.) 36, 388–394 (1987)CrossRefGoogle Scholar
  28. 28.
    Yang, J., Onodera, O., Takayama, K.: Design and performance of quick opening shock tube using rubber membrane for weak shock wave generation. Trans. Jpn. Soc. Mech. Eng. Ser. B 60(570), 123–128 (1994)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • R. Mejia-Alvarez
    • 1
  • B. Wilson
    • 1
  • M. C. Leftwich
    • 2
  • A. A. Martinez
    • 1
  • K. P. Prestridge
    • 1
  1. 1.Los Alamos National LaboratoryLos AlamosUSA
  2. 2.George Washington UniversityWashingtonUSA

Personalised recommendations