Skip to main content
Log in

Parallel implicit anisotropic block-based adaptive mesh refinement finite-volume scheme for the study of fully resolved oblique shock wave reflections

  • Original Article
  • Published:
Shock Waves Aims and scope Submit manuscript

Abstract

A new parallel, fully implicit, anisotropic block-based adaptive mesh refinement (AMR) finite-volume scheme is proposed, described and demonstrated for the prediction of laminar, compressible, viscous flows associated with unsteady oblique shock reflection processes. The proposed finite-volume method provides numerical solutions to the Navier–Stokes equations governing the flow of polytropic gases in an accurate and efficient manner on two-dimensional, body-fitted, multi-block meshes consisting of quadrilateral computational cells. The combination of the anisotropic AMR and parallel implicit time-marching techniques adopted is shown to readily facilitate the simulation of challenging and complex shock interaction problems, as represented by the time-accurate predictions of unsteady oblique shock reflection configurations with fully resolved internal shock structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Godunov, S.K.: Finite-difference method for numerical computations of discontinuous solutions of the equations of fluid dynamics. Mat. Sb. 47, 271–306 (1959)

    MathSciNet  Google Scholar 

  2. Colella, P., and Glaz, H. M.: Numerical modelling of inviscid shocked flows of real gases. In: Proceedings of the 8th International Conference on Numerical Methods in Fluid Dynamics. Aachen, Germany (1982)

  3. Woodward, P.R., Colella, P.: The numerical simulation of two-dimensional fluid flow with strong shocks. J. Comp. Phys. 54(1), 115–173 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  4. Glaz, H.M., Colella, P., Glass, I.I., Deschambault, R.L.: A numerical study of oblique shock-wave reflections with experimental comparisons. Proc. R. Soc. Lond. A 398, 117–140 (1985)

    Article  Google Scholar 

  5. Glaz, H.M., Colella, P., Collins, J.P., Ferguson, R.E.: Nonequilibrium effects in oblique shock-wave reflection. AIAA J. 26(6), 698–705 (1988)

    Article  Google Scholar 

  6. Colella, P., Glaz, H.M.: Numerical calculation of complex shock reflections in gases. In: Proceedings of the 9th International Conference on Numerical Methods in Fluid Dynamics. Saclay, France (1984)

  7. Colella, P., Henderson, L.F.: The von Neumann paradox for the diffraction of weak shock waves. J. Fluid Mech. 213, 71–94 (1990)

    Article  MathSciNet  Google Scholar 

  8. Fursenko, A.A., Sharov, D.M., Timofeev, E.V., Voinovich, P.A.: Numerical simulation of shock wave interactions with channel bends and gas nonuniformities. Comp. Fluids 21(3), 377–396 (1992)

    Article  Google Scholar 

  9. Fursenko, A.A., Sharov, D.M., Timofeev, E.V., Voinovich, P.A.: High-resolution schemes and unstructured grids in transient shocked flow simulation. In: Proceedings of the 13th International Conference on Numerical Methods in Fluid Dynamics. Rome, Italy (1992)

  10. Fursenko, A.A., Sharov, D.M., Timofeev, E.V., Voinovich, P.A.: An efficient unstructured Euler solver for transient shocked flows. In: Proceedings of the 19th International Symposium on Shock Waves, Marseille, France, vol. 1, pp. 371–376. Springer, Berlin, Heidelberg (1995)

  11. Beryozkina, M., Ofengeim, D., Syshchikova, M., Timofeev, E.V., Fursenko, A.A., Voinovich, P.A.: A combined adaptive structured/unstructured technique for essentially unsteady shock-obstacle interactions at high Reynolds numbers. In: Proceedings of the 5th International Conference on Hyperbolic Problems—Theory, Numerics, Applications, Stony Brook. New York, United States of America (1994)

  12. Galyukov, A., Fursenko, A.A., Voinovich, P.A., Saito, T., Timofeev, E.V.: Efficient 2D and 3D locally adaptive unstructured Euler solvers for unsteady shocked gas flows. In: Proceedings of the 20th International Symposium on Shock Waves, Pasadena, California, United States of America, vol. 1, pp. 691–696. World Scientific, Singapore (1996)

  13. Sun, M., Takayama, K.: Conservative smoothing on an adaptive quadrilateral grid. J. Comp. Phys. 150(1), 143–180 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  14. Henderson, L.F., Vasilev, E.I., Ben-Dor, G., Elperin, T.: The wall-jetting effect in Mach reflection—theoretical considerations and numerical investigation. J. Fluid Mech. 479, 259–286 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  15. Steinthorsson, E., Modiano, D., Colella, P.: Computations of unsteady viscous compressible flows using adaptive mesh refinement in curvilinear body-fitted grid systems. NASA TM-106704 (1994)

  16. Steinthorsson, E., Modiano, D., Crutchfield, W.Y., Bell, J.B., Colella, P.: An adaptive semi-implicit scheme for simulations of unsteady viscous compressible flows. AIAA Paper 95–1727 (1995)

  17. Ofengeim, D., Timofeev, E.V., Fursenko, A.A., Voinovich, P.A.: A hybrid adaptive structured/unstructured technique for essentially unsteady viscous/inviscid interactions. In: Proceedings of the 1st Asian Computational Fluid Dynamics Conference. Hong Kong, China (1995)

  18. Ofengeim, D., Timofeev, E.V., Voinovich, P.A.: A locally adaptive structured/unstructuredNavier–Stokes solver for essentially unsteady shock-obstacle interactions at high Reynolds numbers. In: Proceedings of the 20th International Symposium on Shock Waves, Pasadena. California, United States of America, vol. 1, pp. 537–542. World Scientific, Singapore (1995)

  19. Timofeev, E.V., Takayama, K., Voinovich, P.A., Galyukov, A., Ofengeim, D., Saito, T.: 2-D/3-D unstructured grid generators, adaptive Euler/Navier-Stokes solvers and their application to unsteady shocked gas flow analysis. In: Proceedings of the 15th International Conference on Numerical Methods in Fluid Dynamics, Monterey. California, United States of America (1996)

  20. Drikakis, D., Ofengeim, D., Timofeev, E.V., Voinovich, P.A.: Computation of non-stationary shock-wave/cylinder interaction using adaptive-grid methods. J. Fluids Struct. 11(6), 665–692 (1997)

    Article  Google Scholar 

  21. Henderson, L.F., Crutchfield, W.Y., Virgona, R.J.: The effects of thermal conductivity and viscosity of argon on shock waves diffracting over rigid ramps. J. Fluid Mech. 331, 1–36 (1997)

    Article  Google Scholar 

  22. Vasilev, E.I., Ben-Dor, G., Elperin, T., Henderson, L.F.: Wall-jetting effect in Mach reflection—Navier-Stokes simulations. J. Fluid Mech. 511, 363–379 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  23. Graves, D.T., Colella, P., Modiano, D., Johnson, J., Sjogreen, B. Gao, X.: A Cartesian Grid Embedded Boundary Method for the Compressible Navier Stokes Equations, to appear in Communications in Applied Mathematics and Computational Sciences (2013)

  24. Henderson, L.F., Takayama, K., Crutchfield, W.Y., Itabashi, S.: The persistence of regular reflection during strong shocks diffracting over rigid ramps. J. Fluid Mech. 431, 273–296 (2001)

    Article  MATH  Google Scholar 

  25. Khotyanovsky, D.K., Bondar, Y.A., Kudryavtsev, A.N., Shoev, G.V., Ivanov, M.S.: Viscous effects in steady reflection of strong shock waves. AIAA J. 47(5), 1263–1269 (2009)

    Article  Google Scholar 

  26. Ivanov, M.S., Bondar, Y.A., Khotyanovsky, D.V., Kudryavtsev, A.N., Shoev, G.V.: Viscosity effects on weak irregular reflection of shock waves in steady flow. Prog. Aero. Sci. 46, 89–105 (2010)

    Article  Google Scholar 

  27. Zhang, J.Z., Groth, C.P.T.: Parallel high-order anisotropic block-based adaptive mesh refinement finite-volume scheme. AIAA Paper 2011–3695 (2011)

  28. Groth, C.P.T., Northrup, S.A.: Parallel implicit adaptive mesh refinement scheme for body-fitted multi-block mesh. AIAA Paper 2005–5333 (2005)

  29. Northrup, S.A., Groth, C.P.T.: Prediction of unsteady laminar flames using a parallel implicit adaptive mesh refinement algorithm. In: Proceedings of the 6th US National Combustion Meeting. Ann Arbor, Michigan (2009)

  30. Northrup, S.A, Groth, C.P.T.: Parallel Implicit adaptive Mesh refinement scheme for unsteady fully-compressible reactive flows. AIAA Paper 2013–2433 (2013)

  31. Gordon, S., McBride, B.J., Zeleznik, F.J.: Computer program for calculation of complex chemical equilibrium compositions and applications, supplement I—transport properties. NASA TM-86885 (1984)

  32. Gordon, S., McBride, B.J.: Computer program for calculation of complex chemical equilibrium compositions and applications, part I-analysis. NASA RP-1311 (1994)

  33. Venkatakrishnan, V.: On the accuracy of limiters and convergence to steady state solutions. AIAA Paper 93–0880 (1993)

  34. Harten, A., Lax, P.D., Van Leer, B.: On upstream differencing and Godunov-type schemes for hyperbolic conservation laws. SIAM Rev. 25(1), 35–61 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  35. Einfeldt, B.: On Godunov-type methods for gas dynamics. SIAM J. Numer. Anal. 25(2), 294–318 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  36. Coirier, W.J., Powell, K.G.: Solution-adaptive Cartesian cell approach for viscous and inviscid flows. AIAA J. 34(5), 938–945 (1996)

    Article  MATH  Google Scholar 

  37. Berger, M.J., Oliger, J.: Adaptive mesh refinement for hyperbolic partial differential equations. J. Comp. Fluid Dyn. 53(3), 484–512 (1984)

    MATH  MathSciNet  Google Scholar 

  38. Berger, M.J., Colella, P.: Local adaptive mesh refinement for shock hydrodynamics. J. Comp. Phys. 82, 68–84 (1989)

    Article  Google Scholar 

  39. Berger, M.J., Saltzman, J.S.: AMR on the CM-2. Appl. Num. Math. 14(1–3), 239–253 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  40. De Zeeuw, D.L., Powell, K.G.: An adaptively refined Cartesian mesh solver for the Euler equations. J. Comp. Phys. 104(1), 56–68 (1993)

    Article  MATH  Google Scholar 

  41. Powell, K.G., Roe, P.R., Quirk, J.: Adaptive-mesh algorithms for computational fluid dynamics. Alg. Trends Comp. Fluid Dyn. Springer, New York (1993)

    Google Scholar 

  42. Quirk, J.J., Hanebutte, U.R.: A parallel adaptive mesh refinement algorithm, NASA CR-191530 (1993)

  43. Groth, C.P.T., De Zeeuw, D.L., Powell, K.G., Gombosi, T.I., Stout, Q.F.: A parallel solution-adaptive scheme for ideal magnetohydrodynamics. AIAA Paper 99–3273 (1999)

  44. Northrup, S.A., Groth, C.P.T.: Solution of laminar diffusion flames using a parallel adaptive mesh refinement algorithm. AIAA Paper 2005–0547 (2005)

  45. Sachdev, J.S., Groth, C.P.T., Gottlieb, J.J.: A parallel solution-adaptive scheme for multi-phase core flows in solid propellant rocket motors. Int. J. Comp. Fluid Dyn. 19(2), 159–177 (2005)

    Article  MATH  Google Scholar 

  46. Sachdev, J.S., Groth, C.P.T., Gottlieb, J.J.: Parallel AMR scheme for turbulent multi-phase rocket motor core flows. AIAA Paper 2005–5334 (2005)

  47. Gao, X., Groth, C.P.T.: A parallel adaptive mesh refinement algorithm for predicting turbulent non-premixed combusting flows. Int. J. Comp. Fluid Dyn. 20(5), 349–357 (2006)

    Article  MATH  Google Scholar 

  48. Gao, X., Groth, C.P.T.: Parallel adaptive mesh refinement scheme for turbulent non-premixed combusting flow prediction. AIAA Paper 2006–1448 (2006)

  49. Saad, Y., Schultz, M.H.: GMRES: a generalized minimum residual algorithm for solving nonsymmetric linear systems. SIAM J. Sci. Stat. Comp. 7(3), 856–869 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  50. Jameson, A.: Time dependent calculations using multigrid, with applications to unsteady flows past airfoils and wings. AIAA Paper 91–1596 (1991)

  51. Isono, S., Zingg, D.W.: A Runge–Kutta–Newton–Krylov algorithm for fourth-order implicit time marching applied to unsteady flows. AIAA Paper 2004–0433 (2004)

  52. Tabesh, M., Zingg, D.W.: Higher-order implicit time-marching methods using a Newton-Krylov algorithm. AIAA Paper 2009–164 (2009)

  53. Henderson, L.F., Gray, P.M.: Experiments on the diffraction of strong blast waves. Proc. R. Soc. Lond. A 377(1771), 363–378 (1981)

    Article  Google Scholar 

  54. Elizarova, T.G., Khokhlov, A.A., Montero, S.: Numerical simulation of shock wave structure in nitrogen. Phys. Fluids 19(6), 0681021–0681024 (2007)

    Article  Google Scholar 

  55. Hryniewicki, M.K., Gottlieb, J.J., Groth, C.P.T.: Shock transition solutions of Navier-Stokes equations with volume viscosity for nitrogen and air. In: Proceedings of the 29th International Symposium on Shock Waves, Madison, Wisconsin, United States of America. Springer (2015) (in press)

  56. Taylor, G.I., Maccoll, J.W.: Division H—The Mechanics of Compressible Fluids. In: Durand, W.F.: Aerodynamic Theory—a general review of progress, vol. III, pp. 209–250. Peter Smith (1976)

Download references

Acknowledgments

The computational resources used to perform all of the calculations reported in this research have been provided by the SciNet High Performance Computing Consortium at the University of Toronto and Compute/Calcul Canada through funding from the Canada Foundation for Innovation (CFI) and the Province of Ontario, Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. K. Hryniewicki.

Additional information

Communicated by R. Bonazza.

This paper is based on work that was presented at the 29th International Symposium on Shock Waves, Madison, Wisconsin, USA, July 14–19, 2013.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hryniewicki, M.K., Groth, C.P.T. & Gottlieb, J.J. Parallel implicit anisotropic block-based adaptive mesh refinement finite-volume scheme for the study of fully resolved oblique shock wave reflections. Shock Waves 25, 371–386 (2015). https://doi.org/10.1007/s00193-015-0572-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00193-015-0572-5

Keywords

Navigation