Skip to main content


Log in

Interaction and coalescence of multiple simultaneous and non-simultaneous blast waves

  • Original Article
  • Published:
Shock Waves Aims and scope Submit manuscript


Interaction of multiple blast waves can be used to direct energy toward a target while simultaneously reducing collateral damage away from the target area. In this paper, simulations of multiple point source explosives were performed and the resulting shock interaction and coalescence behavior were explored. Three to ten munitions were placed concentrically around the target, and conditions at the target area were monitored and compared to those obtained using a single munition. For each simulation, the energy summed over all munitions was kept constant, while the radial distances between target and munitions and the munition initiation times were varied. Each munition was modeled as a point source explosion. The resulting blast wave propagation and shock front coalescence were solved using the inviscid Euler equations of gas dynamics on overlapping grids employing a finite difference scheme. Results show that multiple munitions can be beneficial for creating extreme conditions at the intended target area; over 20 times higher peak pressure is obtained for ten simultaneous munitions compared to a single munition. Moreover, peak pressure at a point away from the target area is reduced by more than a factor of three.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others


  1. Aki, T., Higashino, F.: A numerical study on implosion of polygonally interacting shocks and consecutive explosion in a box. In: 17th Proceedings of the International Symposium on Shock Waves and Shock Tubes Current topics in shock waves, Bethlehem, PA, July 17–21, (A91–40576 17–34), pp. 167–172. AIP New York (1990)

  2. Apazidis, N., Lesser, M.: On generation and convergence of polygonal-shaped shock waves. J. Fluid Mech. 309, 301–319 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  3. Balasubramanian, K., Eliasson, V.: Numerical investigations of the porosity effect on the shock focusing process. Shock Waves 23(6), 583–594 (2013)

    Article  Google Scholar 

  4. Banks, J.W., Aslam, T.D.: Richardson extrapolation for linearly degenerate discontinuities. J. Sci. Comput. 57(1), 1–18 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  5. Betelu, S., Aronson, D.: Focusing of noncircular self-similar shock waves. Phys. Rev. Lett. 87(7), 074501 (2001)

    Article  Google Scholar 

  6. Book, D., Löhner, R.: Simulation and theory of the quatrefoil instability of a converging cylindrical shock. In: 17th, Proceedings of the International Symposium on Shock Waves and Shock Tubes Current topics in shock waves, Bethlehem, PA, July 17–21, (A91–40576 17–34), pp. 149–154. AIP New York (1990)

  7. Brode, H.L.: Quick estimates of peak overpressure from two simultaneous blast waves. Tech. rep., Tech. Rep. DNA4503T, Defense Nuclear Agency, Aberdeen Proving Ground, MD (1977)

  8. Brown, D.L., Henshaw, W.D., Quinlan, D.J.: Overture: An object-oriented framework for solving partial differential equations on overlapping grids. Object Oriented Methods for Interoperable Scientific and Engineering Computing. SIAM pp. 245–255 (1999)

  9. Chesshire, G., Henshaw, W.: Composite overlapping meshes for the solution of partial differential equations. J. Comput. Phys. 90(1), 1–64 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  10. Demmig, F., Hemmsoth, H.H.: Model computation of converging cylindrical shock waves—initial configurations, propagation, and reflection. In: 17th, Proceedings of the International Symposium on Shock Waves and Shock Tubes Current topics in shock waves, Bethlehem, PA, July 17–21, (A91–40576 17–34), pp. 155–160. AIP New York (1990)

  11. Dimotakis, P.E., Samtaney, R.: Planar shock cylindrical focusing by a perfect-gas lens. Phys. Fluids 18, 031,705 (2006)

    Article  Google Scholar 

  12. Eliasson, V., Apazidis, N., Tillmark, N.: Shaping converging shock waves by means of obstacles. J. Vis. 9, 240 (2006)

    Article  Google Scholar 

  13. Eliasson, V., Apazidis, N., Tillmark, N.: Controlling the form of strong converging shocks by means of disturbances. Shock Waves 17, 29–42 (2007)

    Article  Google Scholar 

  14. Eliasson, V., Apazidis, N., Tillmark, N., Lesser, M.: Focusing of strong shocks in an annular shock tube. Shock Waves 15, 205–217 (2006)

    Article  Google Scholar 

  15. Glass, I.: Shock Waves and Man. The University Toronto Press, Toronto (1974)

    Google Scholar 

  16. Guderley, G.: Starke kugelige und zylindrische Verdichtungsstöße in der Nähe desKugelmittelpunktes bzw. der Zylinderachse. Luftfahrt Forsch. 19, 302–312 (1942)

    MathSciNet  MATH  Google Scholar 

  17. Henshaw, W.D., Schwendeman, D.W.: Parallel computation of three-dimensional flows using overlapping grids with adaptive mesh refinement. J. Comput. Phys. 227(16), 7469–7502 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  18. Hikida, S., Needham, C.E.: Low amplitude multiple burst (lamb) model. Tech. rep., S-cubed Final Report, S-CUBED-R-81-5067 (1981)

  19. Hosseini, S.H.R., Takayama, K.: Implosion of a spherical shock wave reflected from a spherical wall. J. Fluid Mech. 530, 223–239 (2005)

    Article  MATH  Google Scholar 

  20. Jiang, Z., Takayama, K., Moosad, K.P.B., Onodera, O., Sun, M.: Numerical and experimental study of a micro-blast wave generated by pulsed-laser beam focusing. Shock waves 8, 337–349 (1998)

    Article  Google Scholar 

  21. Kandula, M., Freeman, R.: On the interaction and coalescence of spherical blast waves. Shock waves 18, 21–33 (2008)

    Article  MATH  Google Scholar 

  22. Keefer, J.H., Reisler, R.E.: Simultaneous and non-simultaneous multiple detonations. In: Proceedings of the 14th International Symposium Shock waves and shock tubes, New South Wales, Australia, pp. 543–552 (1984)

  23. Kjellander, M.K., Tillmark, N.T., Apazidis, N.: Experimental determination of self-similarity constant for converging cylindrical shocks. Phys. Fluids 23(11), 116103 (2011)

    Article  Google Scholar 

  24. Kjellander, M.K., Tillmark, N.T., Apazidis, N.: Energy concentration by spherical converging shocks generated in a shock tube. Phys. Fluids 24(12), 126103 (2012)

    Article  Google Scholar 

  25. Knystautas, R., Lee, B., Lee, J.: Diagnostic experiments on converging detonations. Phys. Fluids. Suppl. 1, 165–168 (1969)

    Google Scholar 

  26. Matsuo, M., Ebihara, K., Ohya, Y.: Spectroscopic study of cylindrically converging shock waves. J. Appl. Phys. 58(7), 2487–2491 (1985)

    Article  Google Scholar 

  27. Needham, C.E.: Blast Waves. Shock Wave and High Pressure Phenomena. Springer, Berlin Heidelberg (2010)

    Google Scholar 

  28. Neemeh, R.A., Ahmad, Z.: Stability and collapsing mechanism of strong and weak converging cylindrical shock waves subjected to external perturbation. In: Proceedings of the 15th International Symposium Shock waves and shock tubes, Berkeley, CA, pp. 423–430. Stanford Univ. Press (1986)

  29. Perry, R.W., Kantrowitz, A.: The production and stability of converging shock waves. J. Appl. Phys 22, 878–886 (1951)

    Article  Google Scholar 

  30. Roig, R., Glass, I.: Spectroscopic study of combustion-driven implosions. Phys. Fluids 20(10), 1651–1656 (1977)

    Article  Google Scholar 

  31. Roy, C.J.: Review of discretization error estimators in scientific computing. AIAA Paper 2010–0126 (2010)

  32. Saito, T., Glass, I.: Temperature measurements at an implosion focus. Proc. R. Soc. Lond. A 384, 217–231 (1982)

    Article  Google Scholar 

  33. Schwendeman, D.W.: On converging shock waves of spherical and polyhedral form. J. Fluid Mech. 454, 365–386 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  34. Schwendeman, D.W., Whitham, G.B.: On converging shock waves. Proc. R. Soc. Lond. A 413, 297–311 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  35. Shao-Lin, L.: Cylindrical shock waves produced by instantaneous energy release. J. Appl. Phys. 25(1), 54–57 (1954)

    Article  MATH  Google Scholar 

  36. Starkenberg, J.K., Benjamin, K.J.: Predicting coalescence of blast waves from sequentially exploding ammunition stacks. Tech. rep., Army Research Lab Report ARL-TR-645 (1994)

  37. Takayama, K., Kleine, H., Grönig, H.: An experimental investigation of the stability of converging cylindrical shock waves in air. Exp. Fluids 5, 315–322 (1987)

    Article  Google Scholar 

  38. Takayama, K., Onodera, O., Hoshizawa, Y.: Experiments on the stability of converging cylindrical shock waves. Theor. Appl. Mech. 32, 305–329 (1984)

    Google Scholar 

  39. Taylor, G.: The formation of a blast wave by a very intense explosion. I. Theoretical discussion. In: Proceedings of the Royal Society of London. Series A Mathematical and Physical Sciences pp. 159–174 (1950)

  40. Watanabe, M., Onodera, O., Takayama, K.: Shock wave focusing in a vertical annular shock tube. Theor. Appl. Mech 32, 99–104 (1995)

    Google Scholar 

  41. Whitham, G.B.: Linear and nonlinear waves. Wiley, New York (1974)

    MATH  Google Scholar 

  42. Wu, J., Neemeh, R., Ostrowski, P.: Experiments on the stability of converging cylindrical shock waves. AIAA J. 19, 257–258 (1981)

    Article  Google Scholar 

  43. Yeghiayan, R.P., Lee, W.N., Walsh, J.P.: Blast and thermal effects of multiple nuclear burst exposure of aircraft in a base-escape mode (ada058301). Tech. rep., No. KA-TR-146. Kaman Avidyne Burlington, MA (1977)

Download references


We wish to thank the Center for High-Performance Computing at University of Southern California for providing free access to computing resources. We also wish to thank Prof. Bill Henshaw at Rensselear Polytechnic Institute for help with Overture.

Author information

Authors and Affiliations


Corresponding author

Correspondence to V. Eliasson.

Additional information

Communicated by A. Podlaskin.

This paper is based on work that was presented at the 21st International Symposium on Shock Interaction, Riga, Latvia, August 3–8, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qiu, S., Eliasson, V. Interaction and coalescence of multiple simultaneous and non-simultaneous blast waves. Shock Waves 26, 287–297 (2016).

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: