Shock Waves

, Volume 25, Issue 6, pp 611–622 | Cite as

Shock structures and instabilities formed in an underexpanded jet impinging on to cylindrical sections

  • N. Mason-Smith
  • D. Edgington-Mitchell
  • N. A. Buchmann
  • D. R. Honnery
  • J. Soria
Original Article


Schlieren visualisations are used to investigate the influence of cylindrical surface curvature on both the time-invariant and oscillatory behaviour of the shock structures within underexpanded jets impinging on to a surface. At moderate standoff distances \(\left( \frac{h}{d} < 5\right) \), the impingement surface curvature affects the temporal behaviour of the flow significantly, but with only slight variations in the time-invariant structure. A convex surface curvature constrains flapping oscillations to a single plane, the normal of which is parallel to the cylinder axis; the oscillation frequency is largely unaffected. For the standoff distances and nozzle pressure ratios studied, concave surface curvature suppresses the formation of impingement tones. A mechanism is proposed whereby entrainment of the recirculated wall jet flow alters the shear layer receptivity to acoustic disturbances, breaking the acoustic feedback loop that drives the jet oscillations.


Aeroacoustics Schlieren Impinging jet 



The authors gratefully acknowledge the support given to the project by the Australian Research Council.


  1. 1.
    Alvi, F.S., Lou, H., Shih, C., Kumar, R.: Experimental study of physical mechanisms in the control of supersonic impinging jets using microjets. J. Fluid Mech. 613, 55–83 (2008)zbMATHCrossRefGoogle Scholar
  2. 2.
    Carling, J.C., Hunt, B.L.: The near wall jet of a normally impinging, uniform, axisymmetric, supersonic jet. J. Fluid Mech. 66, 159–176 (1974)zbMATHCrossRefGoogle Scholar
  3. 3.
    Cornaro, C., Fleischer, A.S., Goldstein, R.J.: Flow visualization of a round jet impinging on cylindrical surfaces. Exp. Therm. Fluid Sci. 20, 66–78 (1999)CrossRefGoogle Scholar
  4. 4.
    Donaldson, C.D., Snedeker, R.S.: A study of free jet impingement. Part 1. Mean properties of free and impinging jets. J. Fluid Mech. 45, 281–319 (1971)CrossRefGoogle Scholar
  5. 5.
    Edgington-Mitchell, D., Oberleithner, K., Honnery, D.R., Soria, J.: Coherent structure and sound production in the helical mode of a screeching axisymmetric jet. J. Fluid Mech. 748, 822–847 (2014)CrossRefGoogle Scholar
  6. 6.
    Henderson, B., Powell, A.: Experiments concerning tones produced by an axisymmetric choked jet impinging on flat plates. J. Sound Vib. 168, 307–326 (1993)CrossRefGoogle Scholar
  7. 7.
    Henderson, B.: The connection between sound production and jet structure of the supersonic impinging jet. J. Acoust. Soc. Am. 111, 735–747 (2002)CrossRefGoogle Scholar
  8. 8.
    Henderson, B., Bridges, J., Wernet, M.: An experimental study of the oscillatory flow structure of tone-producing supersonic impinging jets. J. Fluid Mech. 542, 115–137 (2005)zbMATHCrossRefGoogle Scholar
  9. 9.
    Jennions, I.K., Hunt, B.L.: The axisymmetric impingement of supersonic air jets on cones. Aeronaut. Q. 31, 26–41 (1980)Google Scholar
  10. 10.
    Krothapalli, A., Rajkuperan, E., Alvi, F., Lourenco, L.: Flow field and noise characteristics of a supersonic impinging jet. J. Fluid Mech. 392, 155–181 (1999)zbMATHCrossRefGoogle Scholar
  11. 11.
    Kumar, R., Wiley, A., Venkatakrishnan, L., Alvi, F.: Role of coherent structures in supersonic impinging jets. Phys. Fluids 25(7), 076101 (2013)Google Scholar
  12. 12.
    Lamont, P.J., Hunt, B.L.: The impingement of underexpanded axisymmetric jets on wedges. J. Fluid Mech. 76, 307–336 (1976)CrossRefGoogle Scholar
  13. 13.
    Lamont, P.J., Hunt, B.L.: The impingement of underexpanded, axisymmetric jets on perpendicular and inclined flat plates. J. Fluid Mech. 100, 471–511 (1980)CrossRefGoogle Scholar
  14. 14.
    Mitchell, D.M., Honnery, D.R., Soria, J.: The visualization of the acoustic feedback loop in impinging underexpanded supersonic jet flows using ultra-high frame rate schlieren. J. Vis. 15, 333–341 (2012)CrossRefGoogle Scholar
  15. 15.
    Mitchell, D.M., Honnery, D.R., Soria, J.: Near-field structure of underexpanded elliptic jets. Exp. Fluids 54, 1–13 (2013)CrossRefGoogle Scholar
  16. 16.
    Powell, A.: The sound-producing oscillations of round underexpanded jets impinging on normal plates. J. Acoust. Soc. Am. 83, 515–533 (1988)CrossRefGoogle Scholar
  17. 17.
    Powell, A.: Lord Rayleigh’s foundations of aeroacoustics. J. Acoust. Soc. Am. 98, 1839–1844 (1995)CrossRefGoogle Scholar
  18. 18.
    Reeder, M.F., Samimy, M.: The evolution of a jet with vortex-generating tabs: real-time visualization and quantitative measurements. J. Fluid Mech. 311, 73–118 (1996)CrossRefGoogle Scholar
  19. 19.
    Risborg, A., Soria, J.: High-speed optical measurements of an underexpanded supersonic jet impinging on an inclined plate. In: Kleine, H., Guillén, M.P.B. (Eds.) 28th International Congress on High-speed Imaging and Photonics, Proc. SPIE, vol. 7126, pp. F-1–F-11 (2009)Google Scholar
  20. 20.
    Tam, C.K.W., Ahuja, K.K.: Theoretical model of discrete tone generation by impinging jets. J. Fluid Mech. 214, 67–87 (1990)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Tam, C.K.W.: Supersonic jet noise. Annu. Rev. Fluid Mech. 27, 17–43 (1995)CrossRefGoogle Scholar
  22. 22.
    Willert, C.E., Mitchell, D.M., Soria, J.: An assessment of high-power light-emitting diodes for high frame rate schlieren imaging. Exp. Fluids 53, 413–421 (2012)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • N. Mason-Smith
    • 1
  • D. Edgington-Mitchell
    • 1
  • N. A. Buchmann
    • 1
  • D. R. Honnery
    • 1
  • J. Soria
    • 1
  1. 1.Monash UniversityMelbourneAustralia

Personalised recommendations