Skip to main content
Log in

Experimental investigation of the stress wave propagation inside a granular column impacted by a shock wave

  • Technical note
  • Published:
Shock Waves Aims and scope Submit manuscript

Abstract

A simple experimental technique, based on pressure transducers, capable of measuring the stress wave that propagates along the solid phase of a granular column after being hit head-on by a plane shock wave is presented. The technique is based on installing couples of gauges at different cross-sections along the granular column in such a way that one transducer measures the overall pressure acting on it while the other measures only the pressure exerted on it by the gaseous phase of the granular column. By means of the presented experimental technique the time histories of the stresses normal to the shock tube walls and data on the stress wave attenuation as it propagates downstream towards the shock tube end wall were obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Notes

  1. Along the course of this paper, the term “pressure” indicates overpressure (gage pressure).

References

  1. Ben-Dor, G., Britan, A., Elperin, T., Igra, O., Jiang, J.P.: Experimental investigation of the interaction between weak shock waves and granular layers. Exp. Fluids 22, 432–443 (1997)

    Article  Google Scholar 

  2. Britan, A., Ben-Dor, G.: Shock tube study of the dynamic behavior of granular materials. Int. J. Multiph. Flow 32(5), 623–642 (2006)

  3. Britan, A., Ben-Dor, G., Elperin, T., Igra, O., Jiang, J.P.: Mechanism of compressive stress formation during weak shock waves impact with granular layer. Exp. Fluids 22, 507–518 (1997)

    Article  Google Scholar 

  4. Britan, A., Ben-Dor, G., Igra, O., Shapiro, H.: Development of a general approach for predicting the pressure fields of unsteady gas flows through granular media. J. Appl. Phys 99(9), 093519-093519-12 (2006)

    Article  Google Scholar 

  5. Britan, A., Ben-Dor, G., Igra, O., Shapiro, H.: Shock wave attenuation by granular filters. Int. J. Multiph. Flows 27, 617–634 (2001)

    Article  MATH  Google Scholar 

  6. Britan, A., Ben-Dor, G., Shapiro, H.: Numerical and analytical investigations of the head-on interaction of shock waves with granular layers. In: Proc. 23rd Int. Symp. Shock Waves, Univ. Texas, Arlington, USA, 210 (2001)

  7. Britan, A., Jiang, J.P., Igra, O., Elperin, T., Ben-Dor, G.: Gas filtration during the impact on weak shock waves on granular layers. Int. J. Multiph. Flow 23(3), 473–491 (1997)

    Article  MATH  Google Scholar 

  8. Britan, A., Levy, A.: Weak shock wave interaction with inert granular media. In: Ben-Dor, G., Igra, O., Elperin, T. (eds.) Handbook of Shock Waves, pp. 597–666. Academic Press, USA (2001)

    Google Scholar 

  9. Britan, A., Shapiro, H., Ben-Dor, G.: The contribution of shock tubes to simplified analysis of gas filtration through granular media. J. Fluid Mech. 586, 147–176 (2007)

    Article  MATH  Google Scholar 

  10. Engebretsen, T., Bakken, J., Hansen, E.W.M., Lysberg, I.: Shock waves and gas flow through granular materials. In: Jenssen, A., Langberg, H., Madshus, C. (eds.) Proc. Workshop Explosion Effects in Granular Materials, pp. 111–131. Oslo, Norway (1996)

  11. Ergun, S.: Fluid flow through packed columns. Chem. Eng. Prog. 48, 89–73 (1952)

    Google Scholar 

  12. Gelfand, B.E., Medvedev, S.P., Borisov, A.A., Polenov, A.N., Frolov, S.M., Tsyganov, S.A.: Shock loading of stratified dusty system. Combustion 9(1/4), 153–165 (1989)

    Google Scholar 

  13. Lage, J.L.: The fundamental theory of flow through permeable media from Darcy to turbulence. In: Ingham, D.B., Pop, I. (eds.) Transport Phenomena in Porous Media, pp. 1–30. Pergamon, New York (1998)

    Chapter  Google Scholar 

  14. Levy, A.: Shock wave interaction with granular materials. Powder Tech. 103, 212–219 (1999)

    Article  Google Scholar 

  15. Liang, S.-F., Chao, Z.: Principles of Gas-Solid Flows. Cambridge Univ. Press, UK (1998)

    MATH  Google Scholar 

  16. Medvedev, S.P., Frolov, S.M., Gelfand, B.E.: Shock wave attenuation by screens composed of granular materials. Eng. Phys. J. (USSR) 55(6), 924–928 (1990). (in Russian)

    Google Scholar 

  17. Mikami, H., Kanada, T., Sakumara, Y., Susuki, T.: Pressure waves in a shock loaded dust layer. In: Proc. 23rd Int. Symp. Shock Waves, pp. 834–840. Univ. Texas, Arlington, USA (2001)

  18. Sakakita, H., Hayashi, K.: Study on pressure profiles in a powder layer using a vertical shock tube. In: Proc. Nat. Symp. Shock Waves, 92, Japan, pp. 655–660 (1992)

  19. Sodre, J., Parise, J.: Fluid flow pressure drop through an annular bed of spheres with wall effects. Exp. Thermal Fluid Sci. 17(3), 265–275 (1998)

    Article  Google Scholar 

  20. van der Grinten, J.G.M., van Dongen, M.E.H., van der Kogel, H.: A shock tube technique for studying pore-pressure propagation in dry and water-saturated porous medium. J. Appl. Phys. 58, 2937–2942 (1985)

  21. Jia, X., Brunet, Th, Laurent, J.: Elastic weakening of a dense granular pack by acoustic fluidization: slipping, compaction, and aging. Phys. Rev. E 84, 020301R1–020301R4 (2011)

    Google Scholar 

Download references

Acknowledgments

This research was partially supported by the Israeli Ministry of Defence under contract No. 4440233491 635.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Ben-Dor.

Additional information

Communicated by M. Brouillette.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Belov, E., Blachman, M., Britan, A. et al. Experimental investigation of the stress wave propagation inside a granular column impacted by a shock wave. Shock Waves 25, 675–681 (2015). https://doi.org/10.1007/s00193-015-0559-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00193-015-0559-2

Keywords

Navigation