Skip to main content
Log in

Effect of viscosity and wall heat conduction on shock attenuation in narrow channels

  • Original Article
  • Published:
Shock Waves Aims and scope Submit manuscript

Abstract

In the present work, the effects due to viscosity and wall heat conduction on shock propagation and attenuation in narrow channels are numerically investigated. A two-dimensional viscous shock tube configuration is simulated, and heat conduction in the channel walls is explicitly included. The simulation results indicate that the shock attenuation is significantly less in the case of an adiabatic wall, and the use of an isothermal wall model is adequate to take into account the wall heat conduction. A parametric study is performed to characterize the effects of viscous forces and wall heat conduction on shock attenuation, and the behaviour is explained on the basis of boundary layer formation in the post-shock region. A dimensionless parameter that describes the shock attenuation is correlated with the diaphragm pressure ratio and a dimensionless parameter which is expressed using the characteristic Reynolds number and the dimensionless shock travel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Duff, R.E.: Shock-tube performance at low initial pressure. Phys. Fluids 2(2), 207–216 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  2. Roshko, A.: On flow duration in low-pressure shock tubes. Phys. Fluids 3(6), 835–842 (1960)

    Article  Google Scholar 

  3. Mirels, H.: Test time in low-pressure shock tubes. Phys. Fluids 6(9), 1201–1214 (1963)

    Article  MATH  Google Scholar 

  4. Mirels, H.: Correlation formulas for laminar shock tube boundary layer. Phys. Fluids 9(7), 1265–1272 (1966)

    Article  Google Scholar 

  5. Sun, M., Ogawa, T., Takayama, K.: Shock propagation in narrow channels. In: Proceedings of the 23rd ISSW, Fort Worth, Texas, USA, 22–27 July, pp. 1320–1326 (2001)

  6. Brouillette, M.: Shock waves at microscales. Shock Waves 13, 3–12 (2003)

    Article  Google Scholar 

  7. Mirshekari, G., Brouillette, M.: One-dimensional model for microscale shock tube flow. Shock Waves 19, 25–38 (2009)

    Article  MATH  Google Scholar 

  8. Ngomo, D., Chaudhuri, A., Chinnayya, A., Hadjadj, A.: Numerical study of shock propagation and attenuation in narrow tubes including friction and heat losses. Comput. Fluids 39, 1711–1721 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  9. Zeitoun, D.E., Burtschell, Y.: Navier–Stokes computations in micro shock tubes. Shock Waves 15, 241–246 (2006)

    Article  MATH  Google Scholar 

  10. Zeitoun, D.E., Burtschell, Y., Graur, I.A., Ivanov, M.S., Kudryavtsev, A.N., Bondar, Y.A.: Numerical simulation of shock wave propagation in microchannels using continuum and kinetic approaches. Shock Waves 19, 307–316 (2009)

  11. Parisse, J.D., Giordano, J., Perrier, P., Burtschell, Y., Graur, I.A.: Numerical investigation of micro shock waves generation. Microfluid Nanofluid 6, 699–709 (2009)

    Article  Google Scholar 

  12. Shoev, G.V., Bondar, Y.A., Khotyanovsky, D.V., Kudryavtsev, A.N., Mirshekari, G., Brouillette, M., Ivanov, M.S.: Numerical study of the shock wave propagation in a micron-scale contracting channel. In: Proceedings of the 27th International Symposium On Rarefied Gas Dynamics, Pacific Grove, California, USA, 10–15 July (2010)

  13. Shoev, G.V., Bondar, Ye A., Khotyanovsky, D.V., Kudryavtsev, A.N., Maruta, K., Ivanov, M.S.: Numerical study of the shock wave entry and propagation in a microchannel. Thermophys. Aeromech. 19(1), 17–32 (2012)

    Article  Google Scholar 

  14. Austin, J.M., Bodony, D.J.: Wave propagation in gaseous small-scale channel flows. Shock Waves 21, 547–557 (2011)

    Article  Google Scholar 

  15. Arun, K.R., Kim, H.D.: Computational study of the unsteady flow characteristics of a micro shock tube. J. Mech. Sci. Technol. 27(2), 451–459 (2013)

    Article  Google Scholar 

  16. Mirshekari, G., Brouillette, M., Giordano, J., Hébert, C., Parisse, J.D., Perrier, P.: Shock waves in microchannels. J. Fluid Mech. 724, 259–283 (2013)

    Article  MATH  Google Scholar 

  17. Ansys Fluent 13.0 User’s Guide (2010)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Puranik.

Additional information

Communicated by M. Brouillette.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deshpande, A., Puranik, B. Effect of viscosity and wall heat conduction on shock attenuation in narrow channels. Shock Waves 26, 465–475 (2016). https://doi.org/10.1007/s00193-015-0556-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00193-015-0556-5

Keywords

Navigation