Skip to main content
Log in

The effect of shock wave therapy on gene expression in human osteoblasts isolated from hypertrophic fracture non-unions

  • Original Article
  • Published:
Shock Waves Aims and scope Submit manuscript

Abstract

Shock wave therapy has been increasingly evaluated as a non-invasive alternative for the treatment of delayed fracture healing and non-unions. Although several clinical studies showed a beneficial effect especially for the hypertrophic type of non-union, little is known about the biological mechanism of its osteogenic effect. To identify the molecular background for the positive effect of shock waves on healing of fracture non-unions, we have analyzed the changes of the global gene expression in human osteoblasts after exposure to shock waves of different energy flux densities. Human osteoblasts were isolated from five patients at non-union sites, treated with 500 impulses of energy flux densities of 0.06 and \(0.5\,{\text {mJ/mm}}^{2}\), and cultured for 96 h. \(\text {Affymetrix}^\circledR \) HG-U133A microarrays were used for the analysis of the shock wave-regulated mRNA-transcripts. Differential gene expression was verified by reverse transcriptase polymerase chain reactions. We identified 47 transcripts that showed differential expression after \(0.06\,{\text {mJ/mm}}^{2}\) and 45 transcripts after \(0.5\,{\text {mJ/mm}}^{2}\) energy treatment. Most intriguing was the up-regulation of neprilysin, calmegin, osteoglycin, asporin, and interleukin-13 receptor-\(\upalpha 2\). Eighteen identified genes were previously described to fulfill an important function in bone growth and metabolism. Our study provides the first molecular profile of shock wave-induced gene expression changes in human osteoblasts from patients with hypertrophic fracture non-unions, and it offers a possible molecular explanation for the positive effects of shock waves in patients ridden with this disease .

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Rompe, J.D., Rosendahl, T., Schollner, C., Theis, C.: High-energy extracorporeal shock wave treatment of nonunions. Clin. Orthop. 387, 102–111 (2001)

    Article  Google Scholar 

  2. Wang, F.S., Yang, K.D., Chen, R.F., Wang, C.J., Sheen-Chen, S.M.: Extracorporeal shock wave promotes growth and differentiation of bone-marrow stromal cells towards osteoprogenitors associated with induction of TGF-beta1. J. Bone Joint Surg. Br. 84(3), 457–461 (2002)

    Article  Google Scholar 

  3. Chooi, Y.S., Penafort, R.: Extra-corporeal shock-wave therapy in the treatment of non-unions. Med. J. Malaysia 59(5), 674–677 (2004)

    Google Scholar 

  4. Maier, M., Milz, S., Tischer, T., Munzing, W., Manthey, N., Stabler, A., Holzknecht, N., Weiler, C., Nerlich, A., Refior, H.J., Schmitz, C.: Influence of extracorporeal shock-wave application on normal bone in an animal model in vivo. Scintigraphy, MRI and histopathology. J. Bone Joint Surg. Br. 84(4), 592–599 (2002)

    Article  Google Scholar 

  5. Tam, K.F., Cheung, W.H., Lee, K.M., Qin, L., Leung, K.S.: Delayed stimulatory effect of low-intensity shockwaves on human periosteal cells. Clin. Orthop. Relat Res. 438(260–5), 260–265 (2005)

    Article  Google Scholar 

  6. Martini, L., Fini, M., Giavaresi, G., Torricelli, P., de Pretto, M., Rimondini, L., Giardino, R.: Primary osteoblasts response to shock wave therapy using different parameters. Artif. Cells Blood Substit. Immobil. Biotechnol. 31(4), 449–466 (2003)

    Article  Google Scholar 

  7. Martini, L., Giavaresi, G., Fini, M., Torricelli, P., de Pretto, M., Schaden, W., Giardino, R.: Effect of extracorporeal shock wave therapy on osteoblastlike cells. Clin. Orthop. 413, 269–280 (2003)

    Article  Google Scholar 

  8. Megas, P.: Classification of non-union. Injury. 36 Suppl 4:S30–7, S30–S37 (2005)

  9. Johannes, E.J., Kaulesar Sukul, D.M., Matura, E.: High-energy shock waves for the treatment of nonunions: an experiment on dogs. J. Surg. Res. 57(2), 246–252 (1994)

    Article  Google Scholar 

  10. Hofmann, A., Hessmann, M.H., Meurer, A., Rommens, P.M., Heine, J., Rompe, J.D.: Extracorporeal shock wave induced changes in function of osteoblast-like cells. Proceedings of American Academy of Orthopaedic Surgeons (AAOS), 613–613 (2005)

  11. Wang, F.S., Wang, C.J., Sheen-Chen, S.M., Kuo, Y.R., Chen, R.F., Yang, K.D.: Superoxide mediates shock wave induction of ERK-dependent osteogenic transcription factor (CBFA1) and mesenchymal cell differentiation toward osteoprogenitors. J. Biol. Chem. 277(13), 10931–10937 (2002)

    Article  Google Scholar 

  12. Rompe, J.D., Decking, J., Schoellner, C., Nafe, B.: Shock wave application for chronic plantar fasciitis in running athletes. A prospective, randomized, placebo-controlled trial. Am. J. Sports Med. 31(2), 268–275 (2003)

    Google Scholar 

  13. U.S. Food and Drug Administration, C.f.D.a.R.H.: Extracorporeal Shock Wave Therapy (ESWT) system - Approval letter. Application Number P010039. Summary of Safety and Effectiveness. Retrieved from www.accessdata.fda.gov/scripts/cdrh/cfdocs/cftopic/pma/pma.cfm?num=p010039 (2002)

  14. Shih, J.H., Michalowska, A.M., Dobbin, K., Ye, Y.M., Qiu, T.H., Green, J.E.: Effects of pooling mRNA in microarray class comparisons. Bioinformatics 20(18), 3318–3325 (2004)

    Article  Google Scholar 

  15. Kendziorski, C., Irizarry, R.A., Chen, K.S., Haag, J.D., Gould, M.N.: On the utility of pooling biological samples in microarray experiments. Proc. Natl. Acad. Sci. USA. 102(12), 4252–4257 (2005)

    Article  Google Scholar 

  16. Han, E.S., Wu, Y.M., McCarter, R., Nelson, J.F., Richardson, A., Hilsenbeck, S.G.: Reproducibility, sources of variability, pooling, and sample size: important considerations for the design of high-density oligonucleotide array experiments. J. Gerontol. Ser. A-Biol. Sci. Med. Sci. 59(4), 306–315 (2004)

    Article  Google Scholar 

  17. Peng, X.J., Wood, C.L., Blalock, E.M., Chen, K.C., Landfield, P.W., Stromberg, A.J.: Statistical implications of pooling RNA samples for microarray experiments. Bmc Bioinform. 4, 26 (2003)

    Article  Google Scholar 

  18. Hofmann, A., Ritz, U., Hessmann, M.H., Alini, M., Rommens, P.M., Rompe, J.D.: Extracorporeal shock wave-mediated changes in proliferation, differentiation, and gene expression of human osteoblasts. J. Trauma-Inj. Infect. Crit. Care 65(6), 1402–1410 (2008). doi:10.1097/Ta.0b013e318173e7c2

    Article  Google Scholar 

  19. Chen, Y.J., Wurtz, T., Wang, C.J., Kuo, Y.R., Yang, K.D., Huang, H.C., Wang, F.S.: Recruitment of mesenchymal stem cells and expression of TGF-beta 1 and VEGF in the early stage of shock wave-promoted bone regeneration of segmental defect in rats. J. Orthop. Res. 22(3), 526–534 (2004)

    Article  Google Scholar 

  20. Chen, Y.J., Kuo, Y.R., Yang, K.D., Wang, C.J., Sheen Chen, S.M., Huang, H.C., Yang, Y.J., Yi-Chih, S., Wang, F.S.: Activation of extracellular signal-regulated kinase (ERK) and p38 kinase in shock wave-promoted bone formation of segmental defect in rats. Bone 34(3), 466–477 (2004)

    Article  Google Scholar 

  21. Frasca, F., Rustighi, A., Malaguarnera, R., Altamura, S., Vigneri, P., Del Sal, G., Giancotti, V., Pezzino, V., Vigneri, R., Manfioletti, G.: HMGA1 inhibits the function of p53 family members in thyroid cancer cells. Cancer Res. 66(6), 2980–2989 (2006)

    Article  Google Scholar 

  22. Wesley, U.V., McGroarty, A., Homoyouni, A.: Dipeptidyl peptidase inhibits malignant phenotype of prostate cancer cells by blocking basic fibroblast growth factor signaling pathway. Cancer Res. 65(4), 1325–1334 (2005)

    Article  Google Scholar 

  23. Reinehr, R., Becker, S., Eberle, A., Grether-Beck, S., Haussinger, D.: Involvement of NADPH oxidase isoforms and SRC family kinases in CD95-dependent hepatocyte apoptosis. Hepatology 42(4), 250A–250A (2005)

    Google Scholar 

  24. Suzuki, T., Nishi, T., Nagino, T., Sasaki, K., Aizawa, K., Kada, N., Sawaki, D., Munemasa, Y., Matsumura, T., Muto, S., Sata, M., Miyagawa, K., Horikoshi, M., Nagai, R.: Functional interaction between the transcription factor Kruppel-like factor 5 and poly(ADP-ribose) polymerase-1 in cardiovascular apoptosis. J. Biol. Chem. 282, 9895–9901 (2007)

    Article  Google Scholar 

  25. Karsdal, M.A., Andersen, T.A., Bonewald, L., Christiansen, C.: Matrix metalloproteinases (MMPs) safeguard osteoblasts from apoptosis during transdifferentiation into osteocytes: MT1-MMP maintains osteocyte viability. DNA Cell Biol. 23(3), 155–165 (2004)

    Article  Google Scholar 

  26. Saigusa, K., Imoto, I., Tanikawa, C., Aoyagi, M., Ohno, K., Nakamura, Y., Inazawa, J.: RGC32, a novel p53-inducible gene, is located on centrosomes during mitosis and results in G2/M arrest. Oncogene. 26, 1110–1121 (2006)

    Article  Google Scholar 

  27. Murphy, D.: Gene expression studies using microarrays: principles, problems, and prospects. Adv. Physiol. Educ. 26(4), 256–270 (2002)

    Google Scholar 

  28. Kerr, M.K.: Experimental design to make the most of microarray studies. Methods Mol. Biol. 224, 137–147 (2003)

    Google Scholar 

  29. Reimer, T., Koczan, D., Gerber, B., Richter, D., Thiesen, H.J., Friese, K.: Microarray analysis of differentially expressed genes in placental tissue of pre-eclampsia: up-regulation of obesity-related genes. Mol. Human Reprod. 8(7), 674–680 (2002)

    Article  Google Scholar 

  30. Ruchon, A.F., Marcinkiewicz, M., Ellefsen, K., Basak, A., Aubin, J., Crine, P., Boileau, G.: Cellular localization of neprilysin in mouse bone tissue and putative role in hydrolysis of osteogenic peptides. J. Bone Miner. Res. 15(7), 1266–1274 (2000)

    Article  Google Scholar 

  31. Indig, F.E., Benayahu, D., Fried, A., Wientroub, S., Blumberg, S.: Neutral endopeptidase (EC 3.4.24.11) is highly expressed on osteoblastic cells and other marrow stromal cell types. Biochem. Biophys. Res. Commun. 172(2), 620–626 (1990)

    Article  Google Scholar 

  32. Ibbotson, K.J., D’Souza, S.M., schodt-Lanckman, M., Appelboom, T.E.: Inhibition of bone resorption in vitro by human enkephalinase (EC 3.4.24.11), a neutral metalloendopeptidase. J. Bone Miner. Res. 7(3), 273–279 (1992)

    Article  Google Scholar 

  33. Ge, G.X., Seo, N.S., Liang, X.W., Hopkins, D.R., Hook, M., Greenspan, D.S.: Bone morphogenetic protein-1/Tolloid-related metalloproteinases process osteoglycin and enhance its ability to regulate collagen fibrillogenesis. J. Biol. Chem. 279(40), 41626–41633 (2004)

    Article  Google Scholar 

  34. Bentz, H., Thompson, A.Y., Armstrong, R., Chang, R.J., Piez, K.A., Rosen, D.M.: Transforming growth factor-beta 2 enhances the osteoinductive activity of a bovine bone-derived fraction containing bone morphogenetic protein-2 and 3. Matrix. 11(4), 269–275 (1991)

    Article  Google Scholar 

  35. Lorenzo, P., Aspberg, A., Onnerfjord, P., Bayliss, M.T., Neame, P.J., Heinegard, D.: Identification and characterization of asporin: a novel member of the leucine-rich repeat protein family closely related to decorin and biglycan. J. Biol. Chem. 276(15), 12201–12211 (2001)

    Article  Google Scholar 

  36. Kukita, A., Bonewald, L., Rosen, D., Seyedin, S., Mundy, G.R., Roodman, G.D.: Osteoinductive factor inhibits formation of human osteoclast-like cells. Proc. Natl. Acad. Sci. USA. 87(8), 3023–3026 (1990)

  37. Yoshinaga, K., Tanii, I., Toshimori, K.: Molecular chaperone calmegin localization to the endoplasmic reticulum of meiotic and post-meiotic germ cells in the mouse testis. Arch. Histol. Cytol. 62(3), 283–293 (1999)

  38. Ikawa, M., Nakanishi, T., Yamada, S., Wada, I., Kominami, K., Tanaka, H., Nozaki, M., Nishimune, Y., Okabe, M.: Calmegin is required for fertilin alpha/beta heterodimerization and sperm fertility. Dev. Biol. 240(1), 254–261 (2001)

  39. Nakanishi, T., Isotani, A., Yamaguchi, R., Ikawa, M., Baba, T., Suarez, S.S., Okabe, M.: Selective passage through the uterotubal junction of sperm from a mixed population produced by chimeras of calmegin-knockout and wild-type male mice. Biol. Reprod. 71(3), 959–965 (2004)

    Article  Google Scholar 

  40. Ohsako, S., Hayashi, Y., Bunick, D.: Molecular cloning and sequencing of calnexin-t. An abundant male germ cell-specific calcium-binding protein of the endoplasmic reticulum. J. Biol. Chem. 269(19), 14140–14148 (1994)

    Google Scholar 

  41. Ohsako, S., Janulis, L., Hayashi, Y., Bunick, D.: Characterization of domains in mice of calnexin-t, a putative molecular chaperone required in sperm fertility, with use of glutathione S-transferase-fusion proteins. Biol. Reprod. 59(5), 1214–1223 (1998)

    Article  Google Scholar 

  42. Frost, A., Jonsson, K.B., Brandstrom, H., Ljunghall, S., Nilsson, O., Ljunggren, O.: Interleukin (IL)-13 and IL-4 inhibit proliferation and stimulate IL-6 formation in human osteoblasts: Evidence for involvement of receptor subunits IL-13R, IL-13R alpha, and IL-4R alpha. Bone 28(3), 268–274 (2001)

    Article  Google Scholar 

  43. Fichtner-Feigl, S., Strober, W., Kawakami, K., Puri, R.K., Kitani, A.: IL-13 signaling through the IL-13 alpha 2 receptor is involved in induction of TGF-beta 1 production and fibrosis. Nat. Med. 12(1), 99–106 (2006)

    Article  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the excellent technical assistance of Angelika Ackermann and Dr. Christiane Stelzer. No benefits in any kind have been received or will be received by the authors from a commercial party related directly or indirectly to the subject of this article. Funds were received in total support of the research presented in this article. The funding agency was the “Innovationsstiftung Rheinland-Pfalz” (Grant 15202-38 62 61/577).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Hofmann.

Additional information

Communicated by S. H. R. Hosseini.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hofmann, A., Ritz, U., Rompe, JD. et al. The effect of shock wave therapy on gene expression in human osteoblasts isolated from hypertrophic fracture non-unions. Shock Waves 25, 91–102 (2015). https://doi.org/10.1007/s00193-014-0542-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00193-014-0542-3

Keywords

Navigation