Skip to main content
Log in

Shear layer characteristics of supersonic free and impinging jets

  • Original Article
  • Published:
Shock Waves Aims and scope Submit manuscript

Abstract

The initial shear layer characteristics of a jet play an important role in the initiation and development of instabilities and hence radiated noise. Particle image velocimetry has been utilized to study the initial shear layer development of supersonic free and impinging jets. Microjet control employed to reduce flow unsteadiness and jet noise appears to affect the development of the shear layer, particularly near the nozzle exit. Velocity field measurements near the nozzle exit show that the initially thin, uncontrolled shear layer develops at a constant rate while microjet control is characterized by a rapid nonlinear thickening that asymptotes downstream. The shear layer linear growth rate with microjet control, in both the free and the impinging jet, is diminished. In addition, the thickened shear layer with control leads to a reduction in azimuthal vorticity for both free and impinging jets. Linear stability theory is used to compute unstable growth rates and convection velocities of the resultant velocity profiles. The results show that while the convection velocity is largely unaffected, the unstable growth rates are significantly reduced over all frequencies with microjet injection. For the case of the impinging jet, microjet control leads to near elimination of the impingement tones and an appreciable reduction in broadband levels. Similarly, for the free jet, significant reduction in overall sound pressure levels in the peak radiation direction is observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

References

  1. Alkislar, M.B., Krothapalli, A., Butler, G.: The effect of streamwise vortices on the aeroacoustics of a mach 0.9 jet. J. Fluid Mech. 578, 139–169 (2007)

    Article  MATH  Google Scholar 

  2. Alvi, F., Shih, C., Elavarasan, R., Garg, G., Krothapalli, A.: Control of supersonic impinging jet flows using supersonic microjets. AIAA J. 41(7), 1347–1355 (2003)

    Article  Google Scholar 

  3. Alvi, F.S., Lou, H., Shih, C., Kumar, R.: Experimental study of physical mechanisms in the control of supersonic impinging jets using microjets. J. Fluid Mech. 613, 55–83 (2008)

    Article  Google Scholar 

  4. Brown, G.L., Roshko, A.: On density effects and large structure in turbulent mixing layers. J. Fluid Mech. 64(04), 775–816 (1974)

    Article  Google Scholar 

  5. Crighton, D., Gaster, M.: Stability of slowly diverging jet flow. J. Fluid Mech. 77(02), 397–413 (1976)

    Article  MATH  Google Scholar 

  6. Herbert, T.: Parabolized stability equations. Annu. Rev. Fluid Mech. 29(1), 245–283 (1997)

  7. Jordan, P., Colonius, T.: Wave packets and turbulent jet noise. Annu. Rev. Fluid Mech. 45, 173–195 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  8. Lou, H.: Control of supersonic impinging jets using microjets. Ph.D. thesis, The Florida State University (2005)

  9. Mei, R.: Velocity fidelity of flow tracer particles. Exp. Fluids 22(1), 1–13 (1996)

  10. Michalke, A.: Survey on jet instability theory. Prog. Aerosp. Sci. 21, 159–199 (1984)

    Article  Google Scholar 

  11. Morris, P.J.: The instability of high speed jets. Int. J. Aeroacoustics 9(1), 1–50 (2010)

    Article  MATH  Google Scholar 

  12. Morris, P.J., Giridharan, M.G., Lilley, G.M.: On the turbulent mixing of compressible free shear layers. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 431(1882), 219–243 (1990)

    Article  MATH  Google Scholar 

  13. Munday, D., Gutmark, E., Liu, J., Kailasanath, K.: Flow structure and acoustics of supersonic jets from conical convergent-divergent nozzles. Phys. Fluids 23(11), 116 (2011).,102

    Article  Google Scholar 

  14. Plaschko, P.: Helical instabilities of slowly divergent jets. J. Fluid Mech. 92(02), 209–215 (1979)

    Article  MATH  Google Scholar 

  15. Powell, A.: The sound-producing oscillations of round underexpanded jets impinging on normal plates. J. Acoust. Soc. Am. 83(2), 515–533 (1988)

    Article  Google Scholar 

  16. Samimy, M., Zaman, K., Reeder, M.: Effect of tabs on the flow and noise field of an axisymmetric jet. AIAA J. 31(4), 609–619 (1993)

    Article  Google Scholar 

  17. Sheplak, M., Spina, E.F.: Control of high-speed impinging-jet resonance. AIAA J. 32(8), 1583–1588 (1994)

    Article  Google Scholar 

  18. Shih, C., Alvi, F., Washington, D.: Effects of counterflow on the aeroacoustic properties of a supersonic jet. J. Aircr. 36(2), 451–457 (1999)

    Article  Google Scholar 

  19. Sinha, A., Rodriguez, D., Bres, G., Colonius, T.: Wavepacket models for supersonic jet noise. J. Fluid Mech. 742, 71–95 (2014)

    Article  Google Scholar 

  20. Suzuki, T., Colonius, T.: Instability waves in a subsonic round jet detected using a near-field phased microphone array. J. Fluid Mech. 565, 197–226 (2006)

    Article  Google Scholar 

  21. Tam, C.K.: Supersonic jet noise. Annu. Rev. Fluid Mech. 27(1), 17–43 (1995)

    Article  Google Scholar 

  22. Tam, C.K., Hu, F.Q.: On the three families of instability waves of high-speed jets. J. Fluid Mech. 201, 447–483 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  23. Timmins, B.H., Wilson, B.W., Smith, B.L., Vlachos, P.P.: A method for automatic estimation of instantaneous local uncertainty in particle image velocimetry measurements. Exp. Fluids 53(4), 1133–1147 (2012)

    Article  Google Scholar 

  24. Zaman, K.: Spreading characteristics of compressible jets from nozzles of various geometries. J. Fluid Mech. 383, 197–228 (1999)

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the support provided by the Florida Center for Advanced Aero-Propulsion (FCAAP). The authors also thank the support of FCAAP staff for their help in conducting experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Kumar.

Additional information

Communicated by A. Hadjadj.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Davis, T.B., Kumar, R. Shear layer characteristics of supersonic free and impinging jets. Shock Waves 25, 507–520 (2015). https://doi.org/10.1007/s00193-014-0540-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00193-014-0540-5

Keywords

Navigation