Appendix A: shock wave structure formulation
The non-dimensional governing equations for a perfect gas can be written as:
$$\begin{aligned}&\rho u = M_1 \end{aligned}$$
(7.1)
$$\begin{aligned}&p = M_1 \frac{T}{u} \end{aligned}$$
(7.2)
$$\begin{aligned}&\rho u\frac{{\mathrm{d}}u}{\mathrm{d}x} \!=\! -\frac{1}{\gamma }\frac{{\mathrm{d}}p}{\mathrm{d}x}\!+\!\frac{1}{Re}\frac{\mathrm{d}}{\mathrm{d}x}\left( {\hat{{\mu }}\frac{{\mathrm{d}}u}{{\mathrm{d}}x}} \right) \!+\!E\frac{\mathrm{d}}{{\mathrm{d}}x}\left[ {\zeta \left( {\frac{{\mathrm{d}}u}{{\mathrm{d}}x}} \right) ^{3}} \right] \quad \end{aligned}$$
(7.3)
$$\begin{aligned}&\rho u\frac{{\mathrm{d}}T}{{\mathrm{d}}x} \!=\! \frac{\gamma \!-\!1}{\gamma }u\frac{{\mathrm{d}}p}{{\mathrm{d}}x}\!+\!\frac{\gamma \!-\!1}{Re}\hat{{\mu }}\left( {\frac{{\mathrm{d}}u}{{\mathrm{d}}x}} \right) ^{2}\!+\!\left( {\gamma \!-\!1} \right) E\zeta \left( {\frac{{\mathrm{d}}u}{{\mathrm{d}}x}} \right) ^{4} \nonumber \\&\qquad \qquad +\frac{1}{\left( {\frac{4}{3}+\alpha } \right) PrRe}\frac{\mathrm{d}}{{\mathrm{d}}x}\left( {\kappa \frac{{\mathrm{d}}T}{{\mathrm{d}}x}} \right) , \end{aligned}$$
(7.4)
where
$$\begin{aligned} \mu =\left( {\frac{4}{3}+\alpha } \right) T^{\omega },\quad \kappa =T^{\omega },\quad \quad \,\zeta =T^{\omega _{\zeta }} \end{aligned}$$
(7.5)
The upstream and downstream conditions are
$$\begin{aligned} u_1&= M_1,\quad T_1 =1 \end{aligned}$$
(7.6)
$$\begin{aligned} u_2&= \frac{2}{\gamma +1}\frac{1+\frac{\gamma -1}{2}M_1^2 }{M_1}, \nonumber \\ T_2&= \left( {\frac{2}{\gamma +1}}\right) ^{2}\frac{\left( {1+\frac{\gamma -1}{2}M_1^2 } \right) \left( {\gamma M_1^2 -\frac{\gamma -1}{2}} \right) }{M_1^2 } \end{aligned}$$
(7.7)
Equation (7.3) can be integrated once, with the result
$$\begin{aligned} p=1+\gamma M_1^2 -\gamma M_1 u+\frac{\gamma \hat{{\mu }}}{Re}\frac{{\mathrm{d}}u}{{\mathrm{d}}x}+\gamma E\zeta \left( {\frac{{\mathrm{d}}u}{{\mathrm{d}}x}} \right) ^{3}, \end{aligned}$$
(7.8)
where the constant of integration is evaluated at state 1. Eliminate \(p\) in (7.4), and integrate once, to obtain
$$\begin{aligned} \frac{{\mathrm{d}}T}{{\mathrm{d}}x}&= \frac{\left( {\frac{4}{3}+\alpha } \right) PrRe}{\kappa }\left[ -M_1 \left( {1+\frac{\gamma -1}{2}M_1^2} \right) \right. \nonumber \\&\left. +\frac{\gamma -1}{\gamma }\left( {1+\gamma M_1^2 } \right) u-\frac{\gamma -1}{2}M_1 u^{2}+\frac{M_1 }{\gamma }T \right] \nonumber \\ \end{aligned}$$
(7.9)
This result is (6.5a) for both the N–S and the extended N–S equations. By setting all derivatives equal to zero, it can be shown that the above two equations are consistent with (7.6, 7.7).
By replacing \(p\) in (7.8) with \(M_{1}T/u\), a cubic equation for \({\mathrm{d}}u/{\mathrm{d}}x\) is obtained.
$$\begin{aligned} E\zeta \left( {\frac{{\mathrm{d}}u}{{\mathrm{d}}x}} \right) ^{3}\!+\!\frac{\hat{{\mu }}}{Re}\frac{{\mathrm{d}}u}{{\mathrm{d}}x}\!+\!\left[ {\frac{1+\gamma M_1^2 }{\gamma }-M_1 \left( {u+\frac{T}{\gamma u}} \right) } \right] =0\nonumber \\ \end{aligned}$$
(7.10)
The conventional N–S result is obtained by setting \(E\) equal to zero; the result has the form of (6.5b). An exact solution of the above cubic equation can be written as
$$\begin{aligned}&a = \frac{\hat{{\mu }}}{E\zeta Re},\quad b=\frac{1}{E\zeta }\left[ {\frac{1+\gamma M_1^2 }{\gamma }-M_1 \left( {u+\frac{T}{\gamma u}} \right) } \right] \nonumber \\ \end{aligned}$$
(7.11)
$$\begin{aligned}&A = \left[ {-\frac{b}{2}+\left( {\frac{b^{2}}{4}+\frac{a^{3}}{27}} \right) ^{1/2}} \right] ^{1/3},\nonumber \\&B=\left[ {\frac{b}{2}+\left( {\frac{b^{2}}{4}+\frac{a^{3}}{27}} \right) ^{1/2}} \right] ^{1/3} \end{aligned}$$
(7.12)
$$\begin{aligned}&\frac{{\mathrm{d}}u}{{\mathrm{d}}x} = A-B \end{aligned}$$
(7.13)
which also has the form of (6.5b).
At the upstream state, set
$$\begin{aligned} u=M_1 -\epsilon _{u},\quad T=1+\epsilon _T \end{aligned}$$
(7.14)
To first order, \(a\) and \(b\) are
$$\begin{aligned} a=\frac{1}{ERe},\quad b=\frac{1}{\gamma E}\left( {\frac{\gamma M_1^2 -1}{M_1 }\epsilon _u -\epsilon _T } \right) \end{aligned}$$
(7.15)
and \(A\) and \(B\) become
$$\begin{aligned} A&= \left( {\frac{a}{3}} \right) ^{1/2}-\frac{1}{\gamma Ea}\left( {\frac{\gamma M_1^2 -1}{M_1 }\epsilon _u -\epsilon _T } \right) \end{aligned}$$
(7.16)
$$\begin{aligned} B&= \left( {\frac{a}{3}} \right) ^{1/2}+\frac{1}{\gamma Ea}\left( {\frac{\gamma M_1^2 -1}{M_1 }\epsilon _{u} -\epsilon _{T}} \right) \end{aligned}$$
(7.17)
The final result is
$$\begin{aligned} \frac{\mathrm{d}\epsilon _u }{{\mathrm{d}}x}&= \frac{2Re}{\gamma }\left( {\frac{\gamma M_1^2 -1}{M_1 }\epsilon _u -\epsilon _T } \right) \end{aligned}$$
(7.18)
$$\begin{aligned} \frac{\mathrm{d}\epsilon _T }{{\mathrm{d}}x}&= \frac{\left( {\frac{4}{3}+\alpha } \right) PrRe}{\gamma }\left[ {M_1 \epsilon _T -\left( {\gamma -1} \right) \epsilon _{u}} \right] \end{aligned}$$
(7.19)
By taking the ratio of these two quantities, a phase-plane analysis [23] yields a nondegenerate nodal point.
For the downstream singularity, set
$$\begin{aligned} u=u_2 +\epsilon _u,\quad T=T_2 -\epsilon _T \end{aligned}$$
(7.20)
To first order, \(a\) and \(b\) are
$$\begin{aligned} a=\frac{T_2^{\omega -\omega _{\zeta }} }{ERe},\quad b=\frac{M_1}{\gamma Eu_2^2 T_2^{\omega _{\zeta }} }\left[ {\left( {T_2 -\gamma u_2^2} \right) \epsilon _u +u_2 \epsilon _T } \right] \nonumber \\ \end{aligned}$$
(7.21)
This yields
$$\begin{aligned} \frac{\mathrm{d}\epsilon _u }{{\mathrm{d}}x}&= \frac{M_1 Re}{\gamma u_2^2 T_2^\omega }\left[ {\left( {T_2 -\gamma u_2^2 } \right) \epsilon _u +u_2 \epsilon _T} \right] \end{aligned}$$
(7.22a)
$$\begin{aligned} \frac{\mathrm{d}\epsilon _T }{{\mathrm{d}}x}&= \frac{\gamma -1}{\gamma T_2^\omega }\left( {\frac{4}{3}+\alpha } \right) PrRe\left\{ \left[ {\left( {1+M_1^2 } \right) -\gamma M_1 u_2} \right] \epsilon _u \right. \nonumber \\&\left. -\frac{M_1}{\gamma -1}\epsilon _{T} \right\} \end{aligned}$$
(7.22b)
The \(\epsilon \hbox {s}\) are linearly transformed by [23]
$$\begin{aligned} \epsilon _u&= \left( {\frac{\lambda _+ -d}{c}} \right) \hat{{\epsilon }}_{_u } +\left( {\frac{\lambda _- -d}{c}} \right) \hat{{\epsilon }}_T \end{aligned}$$
(7.23a)
$$\begin{aligned} \epsilon _T&= \hat{{\epsilon }}_u +\hat{{\epsilon }}_T \end{aligned}$$
(7.23b)
with the result
$$\begin{aligned} \frac{\mathrm{d}\hat{{\epsilon }}_u }{{\mathrm{d}}x}=\lambda _+ \hat{{\epsilon }}_u,\quad \frac{\mathrm{d}\hat{{\epsilon }}_T }{{\mathrm{d}}x}=\lambda _- \hat{{\epsilon }}_T \end{aligned}$$
(7.24)
The \(\lambda _\pm \) are the eigenvalues, and are given by
$$\begin{aligned} a&= M_1 Re\left( {\frac{T_2 }{\mu u_2^2 }-1} \right) \end{aligned}$$
(7.25a)
$$\begin{aligned} b&= \frac{M_1 Re}{\gamma u_2 } \end{aligned}$$
(7.25b)
$$\begin{aligned} c&= \frac{2}{\gamma }\left( {\frac{\gamma -1}{\gamma +1}} \right) \left( {\gamma M_1^2 -\frac{\gamma -1}{2}} \right) \left( {\frac{4}{3}+\alpha } \right) PrRe \nonumber \\\end{aligned}$$
(7.25c)
$$\begin{aligned} d&= -\frac{M_1 }{\gamma }\left( {\frac{4}{3}+\alpha } \right) PrRe \end{aligned}$$
(7.25d)
$$\begin{aligned} \lambda _\pm =\frac{1}{2}\left\{ {a+d\pm \left[ {\left( {a-d} \right) ^{2}+4bc} \right] ^{1/2}} \right\} \end{aligned}$$
(7.26)
With the foregoing relations, initial conditions at the downstream state are
$$\begin{aligned} u\left( 0 \right) =u_2 +\epsilon _u,\quad T\left( 0 \right) =T_2 -\frac{c}{\lambda _+ -d}\epsilon _u, \end{aligned}$$
(7.27)
where \(\epsilon _u \) is set equal to \(10^{-4}\). The integration proceeds smoothly from \(\bar{{x}} = 0\), where \(\bar{{x}} = -x\).