Skip to main content
Log in

Air blast reflecting on a rigid cylinder: simulation and reduced scale experiments

  • Original Article
  • Published:
Shock Waves Aims and scope Submit manuscript

Abstract

In this paper, the Multi-Material ALE formulation is applied to simulate the propagation of an air blast through the atmosphere, and its reflection on an assumed rigid cylindrical obstacle. The mathematical and numerical implementations of this formulation are presented. In order to validate the formulation and prove its ability to capture the propagation and reflection of high pressure waves, comparisons of the simulations with the experimental blast pressure measured on an assumed rigid cylinder are performed. The simulation conducted via the presented models and methods gives good predictions for pressure time histories recorded on the rigid cylinder.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Drikakis, D., Ofengeim, D., Timofeev, E., Voionovich, P.: Computation of non-stationary shock-wave/cylinder interaction using adaptative grid methods. J. Fluids Struct. 11(6), 665–692 (1997)

    Article  Google Scholar 

  2. Takayama, K., Itoh, K.: Unsteady drag over cylinders and aerofoils in transonic shock tube flows. In: Proceedings of 15th International Symposium on Shock Waves and Shock Tubes, Stanford, California, pp. 479–485 (1985)

  3. Bryson, A.E., Gross, R.W.: Diffraction of strong shocks by cones, cylinders and spheres. J. Fluid Mech. 10, 1–16 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  4. Heilig, W.H.: Diffraction of a shock wave by a cylinder. Phys. Fluids Suppl. I, 154–157 (1969)

    Google Scholar 

  5. Ben-Dor, G.: Steady, pseudo-steady and unsteady shock wave reflections. Prog. Aerosp. Sci. 25, 329–412 (1988)

    Article  Google Scholar 

  6. Wensheng, H., Onodera, O., Takayama, K.: Unsteady interaction of shock wave diffracting around a circular cylinder in air. Acta Mech. Sinica 7(4), 295–299 (1991)

    Article  Google Scholar 

  7. Aquelet, N., Souli, M., Olovson, L.: Euler Lagrange coupling with damping effects: application to slamming problems. Comput. Methods Appl. Mech. Eng. 195, 110–132 (2006)

    Article  MATH  Google Scholar 

  8. Benson, D.J.: Computational methods in Lagrangian and Eulerian hydrocodes. Comput. Methods Appl. Mech. Eng. 99(2), 235–394 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  9. Souli, M., Shahrour, I.: Arbitrary Lagrangian Eulerian formulation for soil structure interaction problems. Soil Dyn. Earthq. Eng. 35, 72–79 (2012)

    Article  Google Scholar 

  10. Zakrisson, B., Wikman, B., Häggblad, H.-A.: Numerical simulations of blast loads and structural deformation from near-field explosions in air. Int. J. Impact Eng. 38, 597–612 (2011)

    Article  Google Scholar 

  11. Longatte, E., Verreman, V., Souli, M.: Time marching for simulation of fluid-structure interaction problems. J. Fluids Struct. 25(1), 95–111 (2009)

    Article  Google Scholar 

  12. Belytscko, T., Flanagan, D.F., Kennedy, J.M.: Finite element method with user-controlled meshes for fluid-structure interactions. Comput. Methods Appl. Mech. Eng. 33, 682–723 (1982)

    Google Scholar 

  13. Young, D.L.: Time-dependent multi-material flow with large fluid distortion. In: Morton, K.W., Baines, M.J. (eds.) Numerical Methods for Fluid Dynamics, pp. 273–285. Academic, New York (1982)

  14. Colella, P., Woodward, P.R.: Piecewise parabolic method (PPM) for gas-dynamics simulations. J. Comp. Phys. 54(1), 174–201 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  15. Van Leer, B.: Towards the ultimate conservative difference schemes. IV: a new approach to numerical convection. J. Comput. Phys. 23, 276–299 (1977)

    Article  MATH  Google Scholar 

  16. Souli, M., Zolesio, J.P.: Shape derivative of discretized problems. Comput. Methods Appl. Mech. Eng. 108, 187–199 (1993)

  17. Erchiqui, F., Souli, M., Ben Yedder, R.: Nonisothermal finite-element analysis of thermoforming of polyethylene terephthalate sheet: incomplete effect of the forming stage. Polym. Eng. Sci. 47(12), 2129–2144 (2007)

    Article  Google Scholar 

  18. Ozdemir, Z., Souli, M., Fahjan, Y.M.: Application of nonlinear fluid-structure interaction methods to seismic analysis of anchored and unanchored tanks. Eng. Struct. 32(2), 409–423 (2010)

    Article  Google Scholar 

  19. Baker, W.E., Cox, P.A., Westine, P.S., Kulesz, J.J., Strehlow, R.A.: Explosion Hazards and Evaluation. Elsevier Scientific Publishing Company, New York (1983)

  20. Girault, G.: Réponse d’une plaque couplée à un liquide et soumise à une pression mobile. Aspects théoriques et expérimentaux en détonique. Thèse de doctorat de l’Université d’Orléans, France. http://scd.univ-orleans.fr/ (2006)

  21. Lannoy, A.: Analyse des explosions air-hydrocarbures en milieu libre : études déterministe et probabiliste du scenario d’accident. Prévision des effets de surpression. Bull. dir. Etudes and Recherche—EDF (1984)

  22. Desrosier, C., Reboux, A., Brossard, J.: Effect of asymmetric ignition on the vapor cloud spatial blast. Prog. Astronaut. Aeronaut. 134, 21–37 (1991)

    Google Scholar 

  23. Brode, H.L.: Numerical solutions of spherical blast waves. J. Appl. Phys. 26, 766–775 (1985)

    Article  MathSciNet  Google Scholar 

  24. Trélat, S.: Impact de fortes explosions sur les bâtiments représentatifs d’une installation industrielle. Thèse de doctorat. Université d’Orléans (2006)

  25. LS-DYNA® Keyword User’s Manual, Vol. II, Material Models. LS-DYNA R7.1, 19 May 2014 (revision: 5442) Livermore Software Technology Corporation (LSTC), Livermore, CA. http://www.dynasupport.com/manuals/ls-dyna-manuals/ls-dyna-manual-r-7.1-vol-ii

  26. Souli, M., Bouamoul, A., Nguyen-Dang, T.V.: ALE formulation with explosive mass scaling for blast loading: experimental and numerical investigation. CMES Comput. Model. Eng. Sci. 86(5), 469–486 (2012)

    Google Scholar 

  27. Aquelet, N., Souli, M.: 2D to 3D ALE mapping. In: 10th International LS-DYNA Users Conference, Detroit. http://www.dynalook.com/international-conf-2008/FluidStructure-3 (2008)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Langlet.

Additional information

Communicated by J. Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Langlet, A., Souli, M., Aquelet, N. et al. Air blast reflecting on a rigid cylinder: simulation and reduced scale experiments. Shock Waves 25, 47–61 (2015). https://doi.org/10.1007/s00193-014-0531-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00193-014-0531-6

Keywords

Navigation