Skip to main content
Log in

Minimum tube diameters for steady propagation of gaseous detonations

  • Technical note
  • Published:
Shock Waves Aims and scope Submit manuscript

Abstract

Recent experimental results on detonation limits are reported in this paper. A parametric study was carried out to determine the minimum tube diameters for steady detonation propagation in five different hydrocarbon fuel–oxygen combustible mixtures and in five polycarbonate test tube diameters ranging from 50.8 mm down to a small scale of 1.5 mm. The wave propagation in the tube was monitored by optical fibers. By decreasing the initial pressure, hence the sensitivity of the mixture, the onset of limits is indicated by an abrupt drop in the steady detonation velocity after a short distance of travel. From the measured wave velocities inside the test tube, the critical pressure corresponding to the limit and the minimum tube diameters for the propagation of the detonation can be obtained. The present experimental results are in good agreement with previous studies and show that the measured minimum tube diameters can be reasonably estimated on the basis of the \(\lambda \)/3 rule over a wide range of conditions, where \(\lambda \) is the detonation cell size. These new data shall be useful for safety assessment in process industries and in developing and validating models for detonation limits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Matsui, H., Lee, J.H.S.: On the measure of the relative detonation hazards of gaseous fuel–oxygen and air mixtures. Proc. Combust. Inst. 17, 1269–1280 (1978)

    Article  Google Scholar 

  2. Nettleton, M.A.: Gaseous Detonation: Their Nature, Effects and Control. Chapman & Hall Ltd., London (1987)

    Book  Google Scholar 

  3. Hirano, T.: Combustion science for safety. Proc. Combust. Inst. 29, 167–180 (2002)

    Article  Google Scholar 

  4. Ng, H.D., Lee, J.H.S.: Comments on explosion problems for hydrogen safety. J. Loss Prev. Process Ind. 21(2), 136–146 (2008)

    Article  Google Scholar 

  5. Kharlamov, Y.A.: Detonation spraying of protective coatings. Mater. Sci. Eng. 93, 1–37 (1987)

    Article  Google Scholar 

  6. Tyurin, YuN, Pogrebnjak, A.D.: Advances in the development of detonation technologies and equipment for coating deposition. Surf. Coat. Technol. 111(2–3), 269–275 (1999)

    Article  Google Scholar 

  7. Singh, L., Chawla, V., Grewal, J.S.: A review on detonation gun sprayed coatings. J. Miner. Mater. Charact. Eng. 11(3), 243–265 (2012)

    Google Scholar 

  8. Roy, G.D., Frolov, S.M., Borisov, A.A., Netzer, D.W.: Pulse detonation propulsion: challenges, current status, and future perspective. Prog. Energy Combust. Sci. 30, 545–672 (2004)

    Article  Google Scholar 

  9. Wu, M.H., Lu, T.H.: Development of a chemical microthruster based on pulsed detonation. J. Micromech. Microeng. 22(10), 105040 (2012)

    Article  MathSciNet  Google Scholar 

  10. Phylippov, YuG, Dushin, V.R., Nikitin, V.F., Nerchenko, V.A., Korolkova, N.V., Guendugov, V.M.: Fluid mechanics of pulse detonation thrusters. Acta Astronaut. 76, 115–126 (2012)

    Article  Google Scholar 

  11. Fischer, J., Liebner, C., Hieronymus, H., Klemm, E.: Maximum safe diameters of microcapillaries for a stoichiometric ethene/oxygen mixture. Chem. Eng. Sci. 64, 2951–2956 (2009)

    Article  Google Scholar 

  12. Heinrich, S., Edeling, F., Liebner, C., Hieronymus, H., Lange, T., Klemm, E.: Catalyst as ignition source of an explosion inside a microreactor. Chem. Eng. Sci. 84, 540–543 (2012)

    Article  Google Scholar 

  13. Lee, J.H.S.: The Detonation Phenomenon. Cambridge University Press, New York (2008)

    Book  Google Scholar 

  14. Britton, L.G.: Using maximum experimental safe gap to select flame arresters. Process Saf. Prog. 19(3), 140–145 (2000)

    Article  Google Scholar 

  15. Thomas, G.O., Teodorczyk, A.: An evaluation of new procedures for testing explosion arresters. Process Saf. Environ. Prot. 76(4), 277–285 (1998)

    Article  Google Scholar 

  16. Ng, H.D., Zhang, F.: Detonation instability. In: Zhang, F. (ed.) Shock Waves Science and Technology Library. Detonation Dynamics, vol. 6, chap. 3. Springer, Berlin (2012)

  17. Gordon, S., McBride, M.J.: Computer Program for Calculation of Complex Chemical Equilibrium Compositions and Applications. RP-1311, NASA Reference Publication, Cleveland (1996)

    Google Scholar 

  18. Dupré, G., Joannon, J., Knystautas, R., Lee, J.H.: Unstable detonations in the near-limit regime in tubes. Proc. Combust. Inst. 23, 18131820 (1990)

    Google Scholar 

  19. Lee, J.J., Dupré, G., Knystautas, R., Lee, G.H.: Doppler interferometry study of unstable detonations. Shock Waves 5, 175–181 (1995)

    Article  Google Scholar 

  20. Haloua, F., Brouillette, M., Lienhart, V., Dupré, G.: Characteristics of unstable detonations near extinction limits. Combust. Flame 122(4), 422–438 (2000)

    Article  Google Scholar 

  21. Kitano, S., Fukao, M., Susa, A., Tsuboi, N., Hayashi, A.K., Koshi, M.: 2009: Spinning detonation and velocity deficit in small diameter tubes. Proc. Combust. Inst. 32(2), 2355–2362 (2009)

    Article  Google Scholar 

  22. Jackson, S., Lee, B.J., Huang, W., Pintgen, F., Karnesky, J., Liang, Z., Shepherd, J.E.: Experimental detonation propagation under high loss conditions. In: Proceedings of 22nd International Colloquium on the dynamics Explosions and Reactive Systems, Minsk (2009)

  23. Camargo, A., Ng, H.D., Chao, J., Lee, J.H.S.: Propagation of near-limit gaseous detonations in small diameter tubes. Shock Waves 20(6), 499–508 (2010)

    Article  MATH  Google Scholar 

  24. Lee, J.H.S., Jesuthasan, A., Ng, H.D.: Near limit behavior of the detonation velocity. Proc. Combust. Inst. 34(2), 1957–1963 (2013)

    Article  Google Scholar 

  25. Lee, J.H.S.: Dynamic parameters of gaseous detonations. Ann. Rev. Fluid Mech. 16, 311–336 (1984)

    Article  Google Scholar 

  26. Kaneshige, M., Shepherd, J.E.: Detonation database. GALCIT Technical Report FM97-8. http://www.galcit.caltech.edu/detn_db/html/ (1997)

  27. Radulescu, M.I.: The Propagation and Failure Mechanism of Gaseous Detonations: Experiments in Porous-Walled Tubes. Ph.D. thesis, McGill University, Canada (2003)

  28. Zhang, B., Ng, H.D., Lee, J.H.S.: The critical tube diameter and critical energy for direct initiation of detonation in \(\rm {C_2H_2/N_2O/Ar}\) mixtures. Combust. Flame 159(9), 2944–2953 (2012)

  29. Sadahira, K., Kitawaki, Y., Inaba, T., Susa, A., Matsuoka, K., Johzaki, T., Endo, T.: Velocity deficits of Ar and He diluted \({\rm H_2}\)\({\rm O_2}\) system in small diameter tubes. In: Proceedings of 24th International Colloquium Dynamics Explosions Reactive Systems, Taipei (2013)

  30. Ishii, K., Monwar, M.: Detonation propagation with velocity deficits in narrow channels. Proc. Combust. Inst. 33(2), 2359–2366 (2011)

  31. Brandes, E., Gödde, M., Hirsch, W.: Detonation parameters: a basis for the design of microstructured process equipment. Green Process. Synth. 1(4), 345–352 (2012)

    Google Scholar 

Download references

Acknowledgments

This work is supported by the Natural Sciences and Engineering Research Council of Canada (NSERC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. D. Ng.

Additional information

Communicated by S. Dorofeev.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, Y., Ng, H.D. & Lee, J.H.S. Minimum tube diameters for steady propagation of gaseous detonations. Shock Waves 24, 447–454 (2014). https://doi.org/10.1007/s00193-014-0505-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00193-014-0505-8

Keywords

Navigation