Skip to main content
Log in

Rapid compaction of granular material: characterizing two- and three-dimensional mesoscale simulations

  • Original Article
  • Published:
Shock Waves Aims and scope Submit manuscript

Abstract

There have been a variety of numeric and experimental studies investigating the dynamic compaction behavior of heterogeneous materials, including loose dry granular materials. Mesoscale simulations have been used to determine averaged state variables such as particle velocity or stress, where multiple simulations are capable of mapping out a shock Hugoniot. Due to the computational expense of these simulations, most investigators have limited their approach to two-dimensional formulations. In this work we explore the differences between two- and three-dimensional simulations, as well as investigating the effect of stiction and sliding grain-on-grain contact laws on the dynamic compaction of loose dry granular materials. This work presents both averaged quantities as well as distributions of stress, velocity and temperature. The overarching results indicate that, with careful consideration, two- and three-dimensional simulations do result in similar averaged quantities, though differences in their distributions exist. These include differences in the extreme states achieved in the materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

References

  1. Carroll, M.M., Holt, A.C.: Static and dynamic pore-collapse relations for ductile porous materials. J. Appl. Phys. 43, 1626–1636 (1972)

    Article  Google Scholar 

  2. Asay, J.R., Shahinpoor, M.: High-Pressure Shock Compression of Solids, p. 7. Springer, Berlin (1993)

  3. Hermann, W.: Constitutive equation for the dynamic compaction of ductile porous materials. J. Appl. Phys. 40(6), 2490–2499 (1969)

    Article  Google Scholar 

  4. Grady, D.E., Winfree, N.A.: A computational model for polyurethane foam. In: Staudhammer, K.P., Murr, L.E., Meyers, M.A. (eds.) Fundamental Issues and Applications of Shock-Wave and High-Strain-Rate Phenomena. Proceedings of EXPLOMET, pp. 485–491 (2001)

  5. Benson, D.J., Nellis, W.J.: Dynamic compaction of copper powder: computation and experiment. Appl. Phys. Lett. 65, 418–420 (1994)

    Article  Google Scholar 

  6. Benson, D.J.: An analysis by direct numerical simulation of the effects of particle morphology on the shock compaction of copper powder. Model. Simulation Mater. Sci. Eng. 2, 535–550 (1994)

    Article  Google Scholar 

  7. Benson, D.J.: The calculation of the shock velocity: particle velocity relationship for a copper powder by direct numerical simulation. Wave Motion 21, 85–99 (1995)

    Article  MATH  Google Scholar 

  8. Benson, D.J., Nesterenko, V.F., Jonsdottir, F.F., Meyers, M.A.: Quasistatic and dynamic regimes of granular material deformation under impulse loading. J. Mech. Phys. Solids 45(11), 1955–1999 (1997)

    Article  MATH  Google Scholar 

  9. Williamson, R.J.: Parametric studies of dynamic powder consolidation using a particle-level numerical model. J. Appl. Phys. 68, 1287–1294 (1990)

    Article  Google Scholar 

  10. Horie, Y., Yano, K.: Non-equilibrium fluctuations in shock compression of polycrystalline \(\alpha \)-iron. In: Furnish, M.D., Thadhani, N.N., Horie, Y. (eds.) Shock Compaction of Condensed Matter-2001, pp. 553–556 (2002)

  11. Case, S., Horie, Y.: Mesoscale modeling of the response of alumina. In: Furnish, M.D., Elert, M., Russell, T.P., White, C.T. (eds.) Shock Compression of Condensed Matter-2005, pp. 299–302 (2005)

  12. Bourne, N.K.: Modelling the shock response of polycrystals at the mesoscale. In: Furnish, M.D., Elert, M., Russell, T.P., White, C.T. (eds.) Shock Compression of Condensed Matter-2005, pp. 307–310 (2005)

  13. Herbold, E.B., Cai, J., Benson, D.J., Nesterenko, V.F.: Simulation of Particle Size Effect on Dynamic Properties and Fracture of PTFE-W-Al Composites. In: Elert, M., Furnish, M.D., Chau, R., Holmes, N., Nguyen, J. (eds.) Shock Compression of Condensed Matter-2007, pp. 785–788 (2007)

  14. Yano, K., Horie, Y.: Discrete-element modeling of shock compression of polycrystalline copper. Phys. Rev. B 59, 13672–13680 (1999)

    Article  Google Scholar 

  15. Nesterenko, V.F.: Dynamics of Heterogeneous Materials. Springer, Berlin (2001)

    Book  Google Scholar 

  16. Meyers, M.A., Benson, D.J., Olevsky, E.A.: Shock consolidation: microstructurally-based analysis and computational modeling. Acta Mater. 47, 2089–2108 (1999)

    Article  Google Scholar 

  17. Crawford, D.A.: Using mesoscale modeling to investigate the role of material heterogeneity in geologic and planetary materials. In: Furnish, M.D., Elert, M., Russell, T.P., White, C.T. (eds.) Shock Compression of Condensed Matter-2005, pp. 1453–1457. AIP Press (2005)

  18. Conley, P.A., Benson, D.J.: An estimate of the linear strain rate dependence of octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine. J. Appl. Phys. 86, 6717–6728 (1999)

    Article  Google Scholar 

  19. Ripley, R., Zhang, F., Lien, F.-S.: Acceleration and heating of metal particles in condensed explosive detonation. In: Elert, M., Furnish, M.D., Chau, R., Holmes, N., Nguyen, J. (eds.) Shock Compression of Condensed Matter-2007, pp. 409–412 (2007)

  20. Do, I.P.H., Benson, D.J.: Micromechanical modeling of shock-induced chemical reactions in heterogeneous multi-material powder mixtures. Int. J. Plasticity 17, 641–668 (2001)

    Article  MATH  Google Scholar 

  21. Baer, M.R.: Modeling heterogeneous energetic materials at the mesoscale. Thermochim. Acta 384, 351–367 (2002)

    Article  Google Scholar 

  22. Baer, M.R., Trott, : Mesoscale descriptions of shock loaded heterogeneous porous materials. In: Furnish, M.D., Thadhani, N.N., Horie, Y. (eds.) Shock Compression of Condensed Matter-2001, pp. 713–716 (2002)

  23. Menikoff, R.: Compaction wave profiles: simulations of gas gun experiments. J. Appl. Phys. 90, 1754–1760 (2001)

    Article  Google Scholar 

  24. Eakins, D.E., Thadhani, N.N.: Shock compression of reactive powder mixtures. Int. Mater. Rev. 54(4), 181–213 (2009)

    Article  Google Scholar 

  25. Milne, A.M., Bourne, N.K., Millett, J.C.F.: On the un-reacted Hugoniots of three plastic bonded explosives. In: Furnish, M.D., Elert, M., Russell, T.P., White, C.T. (eds.) Shock Compression of Condensed Matter-2005, pp. 175–178 (2006)

  26. Benson, D.J., Conley, P.: Eulerian finite-element simulations of experimentally acquired HMX microstructures. Model. Simul. Mater. Sci. Eng. 7, 333–354 (1999)

    Article  Google Scholar 

  27. Lowe, C.A., Greenaway, M.W.: Compaction processes in granular beds composed of different particle sizes. J. Appl. Phys. 98, 123519 (2005)

    Article  Google Scholar 

  28. Benson, D.J., Do, I., Meyers, M.A.: Computational modeling of shock compression of powders. In: Furnish, M.D., Thadhani, N.N., Horie, Y. (eds.) Shock Compression of Condensed Matter-2001, pp. 1087–1092 (2001)

  29. Tang, Z.P., Wang, W.W.: Discrete element modeling for shock processes of hererogeneous materials. In: Furnish, M.D., Thadhani, N.N., Horie, Y. (eds.) Shock Compression of Condensed Matter-2001, pp. 679–684 (2001)

  30. Baer, M.R.: Mesoscale modeling of shocks in heterogeneous reactive materials. In: Horie, Y. (eds.) Shock Wave Science and Technology Reference Library, V2, pp. 321–356 (2007)

  31. Trott, W.M., Baer, M.R., Castañeda, J.N., Chhabildas, L.C., Asay, J.R.: Investigation of the mesoscopic scale response of low-density pressings of granular sugar under impact. J. Appl. Phys. 101(024917), 1–21 (2007)

    Google Scholar 

  32. Barua, A., Zhou, M.: A Lagrangian framework for analyzing microstructural level response of polymer-bonded explosives. Model. Simul. Mater. Sci. Eng. 19(055001), 1–24 (2011)

    Google Scholar 

  33. Benson, D.J., Tong, W., Ravichandran, G.: Particle-level modeling of dynamic consolidation of Ti-SiC powders. Model. Simul. Mater. Sci. Eng. 3, 771–796 (1995)

    Article  Google Scholar 

  34. Meyers, M.A., Benson, D.J., Olevsky, E.: A shock consolidation: microstructurally-based analysis and computational modeling. Acta Mater. 47(7), 2089–2108 (1999)

    Article  Google Scholar 

  35. Borg, J.P., Vogler, T.J.: Mesoscale calculations of the dynamic behavior of a granular ceramic. Int. J. Solids Struct. 45, 1676–1696 (2008)

    Article  MATH  Google Scholar 

  36. Borg, J.P., Vogler, T.J.: Aspects of simulating the dynamic compaction of a granular ceramic. Model. Simul. Mater. Sci. Eng. 17, 045003 (2009)

    Article  Google Scholar 

  37. Vogler, T.J., Borg, J.P.: Mesoscale and continuum calculations of wave profiles for shock-loaded granular ceramics. In: Elert, M., Furnish, M.D., Chau, R., Holmes, N., Nguyen, J. (eds.) Shock Compression of Condensed Matter-2007, pp. 773–776 (2007)

  38. Vogler, T. Borg, J.P., Grady, D.: On the scaling of steady structured waves in heterogeneous materials. J. Appl. Phys. (submitted)

  39. Tong, W., Ravichandran, F., Christman, T., Vreeland, T.: Processing SiC-particulate reinforced titanium-based metal matrix composites by shock wave consolidation. Acta Mater. 43, 230–250 (1995)

    Google Scholar 

  40. Reaugh, J.E.: Grain-Scale Dynamics in Explosives. Lawrence Livermore National Laboratory, UCRL-ID-150388, pp. 1–56 (2002)

  41. Vorobiev, O.: Discrete and continuum methods for numerical simulations of non-linear wave propagation in discontinuous media. Int. J. Numeric Methods Eng. 83, 482–507 (2010)

    MATH  Google Scholar 

  42. Dwivedi, S.K., Teeter, R.D., Felice, C.W., Gupta, Y.M.: Two dimensional mesoscale simulations of projectile instability during penetration in dry sand. J. Appl. Phys. 104(083502), 1–15 (2008)

    Google Scholar 

  43. Vogler, T.J., Lee, M.Y., Grady, D.E.: Static and dynamic compaction of ceramic powders. Int. J. Solids Struct. 44, 636–658 (2007)

    Article  Google Scholar 

  44. McGlaum, J.M., Thompson, S.L., Elrick, M.G.: CTH: a three-dimensional shock wave physics code. Int. J. Impact Eng. 10, 351–360 (1990)

    Article  Google Scholar 

  45. Meyers, M.A.: Dynamic Behavior of Materials. Wiley-Interscience, New York (1994)

    Book  MATH  Google Scholar 

  46. Austin, R.A., McDowell, D.L., Benson, D.J.: Numerical simulation of shock wave propagation in spatially-resolved particle systems. Model. Simul. Mater. Sci. Eng. 14, 537–561 (2006)

    Article  Google Scholar 

  47. Rice, M.H., McQueen, R.G., Walsh, J.M.: Compression of solids by strong shock waves. Solid State Phys. 6, 1–63 (1958)

    Article  Google Scholar 

  48. Dandekar, D.P., Grady, D.E.: Shock equation of state and dynamic strength of tungsten carbide. In: Shock Compression of Condensed Matter-2001, pp. 783–786 (2001)

  49. Dandekar, D.P.: Spall strength of tungsten carbide. Army Research Laboratory ARL-TR-3335, pp. 1–22 (2004)

  50. Steinberg, D.J.: Equation of state and strength properties of selected materials. Lawrence Livermore National Laboratory, UCRL-MA-106439, pp. 1–122 (1991)

  51. Johnson, G.R., Cook, W.H.: Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures. Eng. Fract. Mech. 21, 31–48 (1985)

    Article  Google Scholar 

  52. Davison, L., Graham, R.A.: Shock compression of solids. Phys. Rep. 55, 255–379 (1979)

    Article  Google Scholar 

  53. Moshe, E., Eliezer, S., Dekel, E., Ludmirsky, A., Henis, Z., Werdiger, M., Goldberg, I.B.: An increase of the spall strength in aluminum, copper, and Metglas at strain rates larger than 10\(^{7}\) s\(^{-1}\). J. Appl. Phys. 83, 4004–4011 (1998)

    Article  Google Scholar 

  54. Graham, R.A.: Solids under High-Pressure Shock Compression. Springer, Berlin (1992)

    Google Scholar 

  55. Bardenhagen, S.G., Brackbill, J.U.: Dynamic stress bridging in granular material. J. Appl. Phys. 83, 5732–5740 (1998)

    Article  Google Scholar 

  56. Roessig, K.M., Foster, J.C.: Experimental simulations of dynamic stress bridging in plastic bonded explosives. In: Furnish, M.D., Thadhani, N.N., Horie, Y. (eds.) Shock Compression of Condensed Matter-2001, pp. 829–832 (2001)

  57. Neal, W.D., Chapman, D.J., Proud, W.G.: The effect of particle size on the shock compaction of a quasi-mono-disperse brittle granular material. In: Elert, M.L., Buttler, W.T., Borg, J.P., Jordan, J.L., Vogler, T.J. (eds.) Shock Compression of Condensed Matter-2011. Proc AIP Conference, pp. 1443–1447 (2012)

  58. Swegle, J.W., Grady, D.E.: Shock viscosity and the prediction of shock wave rise times. J. Appl. Phys. 58, 692–701 (1985)

    Article  Google Scholar 

  59. Zhuang, S., Ravichandran, G., Grady, D.E.: An experimental investigation of shock wave propagating in periodically layered composites. J. Mech. Phys. Solids 51, 245–265 (2003)

    Article  Google Scholar 

  60. Brown, J.L., Vogler, T.J., Grady, D.E., Reinhart, W.D., Chhabildas, L.C., Thornhill, T.F.: Dynamic compaction of sand. In: Shock Compression of Condensed Matter-2001, pp. 1363–1366 (2007)

  61. Grady, D.E.: Structured shock waves and the fourth-power law. J. Appl. Phys. 107(013506), 1–13 (2010)

    Google Scholar 

  62. Vogler, T.J., Alexander, C.S., Wise, J.L., Montgomery, S.T.: Dynamic behavior of tungsten carbide and alumina filled epoxy composites. J. Appl. Phys. 107(4), 043520 1–13 (2010)

    Google Scholar 

  63. Borg, J.P., Chapman, D.J., Tsembelis, K., Proud, W.G., Cogar, J.R.: Dynamic compaction of porous silica powder. J. Appl. Phys. 98(7), 073509, 1–9 (2005)

    Google Scholar 

Download references

Acknowledgments

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. P. Borg.

Additional information

Communicated by N. Thadhani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Borg, J.P., Vogler, T.J. Rapid compaction of granular material: characterizing two- and three-dimensional mesoscale simulations. Shock Waves 23, 153–176 (2013). https://doi.org/10.1007/s00193-012-0423-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00193-012-0423-6

Keywords

Navigation