Advertisement

Shock Waves

, Volume 23, Issue 1, pp 5–23 | Cite as

Macro-mechanical modelling of blast wave mitigation in foams. Part I: review of available experiments and models

  • A. Britan
  • H. Shapiro
  • M. Liverts
  • G. Ben-DorEmail author
  • A. Chinnayya
  • A. Hadjadj
Review

Abstract

Multiphase flows, which involve compressible or incompressible fluids with linear or nonlinear dynamics, are found in all areas of technology at all length scales and flow regimes. In this contribution, we discuss application of aqueous-foam barriers against blast wave impact. The first experiments demonstrating this behaviour were conducted in the early 1980s in free-field tests. Based on structural requirements, various foams with different blast energy contents were tested with the aim of characterizing the time history of the blast pressure reduction. A number of consistent methodologies for calculating this pressure reduction in foam are based on the effective gas flow model. For estimating the uncertainties of these methodologies, we briefly demonstrate their comparison with existing experimental data. Thereafter, we present various modifications of modelling approaches and their comparison with new results of blast wave experiments.

Keywords

Blast-wave Shock waves Mitigation Aqeous foams Experiments and models 

Notes

Acknowledgments

The authors are grateful to Prof. Boris Palamarchuk for numerous and fruitful discussions and also for sharing some of his publications which were not easily accessible.

References

  1. 1.
    Kambouchev, N., Noels, L., Radovitzky, R.: Numerical simulation of the fluid-structure interaction between air blast waves and free-standing plates. Comp. Struct. 85, 923–931 (2007)Google Scholar
  2. 2.
    Su, Z., Peng, W., Zhang, Z., Gogos, G., Skaggs, R., Cheeseman, B., Yen, C.F.: Experimental investigation of a novel blast wave mitigation device. Shock Vib. 16(6), 543–553 (2009)Google Scholar
  3. 3.
    Britan, A., Levy, A.: Weak shock wave interaction with inert granular media. In: Ben-Dor, G., Igra, O., Elperin, T. (eds.) Handbook on Shock Waves, vol. 2, pp. 597–666. Academic Press, Boston (2001)Google Scholar
  4. 4.
    Koehler, S.A., Hilgenfeldt, S., Weeks, E.R., Stone, H.A.: Foam drainage on the microscale: II. Imaging flow through single Plateau borders. J. Colloid Interface Sci. 276, 439–449 (2004)CrossRefGoogle Scholar
  5. 5.
    Saint-Jalmes, A., Zhang, Y., Langevin, D.: Quantitative description of foam drainage: transitions with surface mobility. Euro. Phys. J. E 15, 53–60 (2004)CrossRefGoogle Scholar
  6. 6.
    Hutzler, S., Weaire, D., Saugey, A., Cox, S., Peron, N.: The physics of foam drainage. In: Henning, K.(ed.) Proceeding of 52nd SEPAWA Congress, pp. 191–206. Centrum, Wuerzburg (2005)Google Scholar
  7. 7.
    Raspet, R., Griffiths, S.K.: The reduction of blast noise with aqueous foam. J. Acoust. Soc. Am. 74(6), 1757–1763 (1983)CrossRefGoogle Scholar
  8. 8.
    Gelfand, B.E., Silnikov, M.V.: Explosions and Blast Control, p. 296. St. Petersburg, Asterion (2004)Google Scholar
  9. 9.
    Britan, A., Liverts, M., Ben-Dor, G.: Mitigation of sound waves by wet aqueous foams. Colloids Surf. A Physicochem. Eng. Aspects 344, 48–55 (2009)CrossRefGoogle Scholar
  10. 10.
    Kann, K.B., Kislitsyn, A.A.: A film model of sound propagation in gas–liquid foams: the sound velocity. Colloid J. 65(1), 26–30 (2003)CrossRefGoogle Scholar
  11. 11.
    Kann, K.B., Kislitsyn, A.A.: A film model of sound propagation in gas–liquid foams: the sound absorption. Colloid J. 65(2), 31–34 (2003)CrossRefGoogle Scholar
  12. 12.
    Mujica, N., Fauve, S.: Sound velocity and absorption in a coarsening foam. Phys. Rev. E 66, 021404-1–021404-13 (2002)Google Scholar
  13. 13.
    Ball, G.J., East, R.A.: Shock and blast attenuation by aqueous foam barriers: influence of barrier geometry. Shock waves 9(1), 37–47 (1999)zbMATHCrossRefGoogle Scholar
  14. 14.
    Moxon, N.T., Torrance, A.C., Richardson, S.B.: Sound attenuation with foam. US Patent 4,964,329 (1990)Google Scholar
  15. 15.
    Edberg, D.L., Schneider, S.: Blast attenuation device and method. US Patent 6,901,839B2 (2005)Google Scholar
  16. 16.
    Britan, A., Liverts, M., Ben-Dor, G.: Shock wave propagation through wet particulate foam. Colloids Surf. A Physicochem. Eng. Aspects 145–153 (2011)Google Scholar
  17. 17.
    Palamarchuk, B.I., Postnov, A.B.: Shock waves attenuation at condensed HE detonations placed in gas contained envelopes. The use of explosion energy in welding technique. Kiev: E.O. Paton’s Institute of Electric Welding, pp. 39–41 (1989, in Russian)Google Scholar
  18. 18.
    Smith, P.D., Hetherington, J.G.: Blast and Ballistic Loading of Structures. Butterworth-Heinemann Ltd., Linacre House, Oxford (1994)Google Scholar
  19. 19.
    Shreiber, I., Ben-Dor, G., Britan, A., Feklistov, V.: Foam self-clarification phenomenon: an experimental investigation. Shock Waves 15, 199–204 (2006)CrossRefGoogle Scholar
  20. 20.
    Katgert, G., Mobius, M.E., van Hecke, M.: Rate dependence and role of disorder in linearly sheared two-dimensional foams. Phys. Rev. Lett. 101, 058301–4 (2008)CrossRefGoogle Scholar
  21. 21.
    Denkov, N.D., Tcholakova, S., Golemanov, K., Ananthapadmanabhan, K.P., Lips, A.: Viscous friction in foams and concentrated emulsions under steady shear. Phys. Rev. Lett. 100, 138301 (2008)CrossRefGoogle Scholar
  22. 22.
    Britan, A.B., Zinovik, I.N., Levin, V.A.: Breaking up foam with shock waves. Combust. Explos. Shock Waves 28(5), 550–557 (1992)CrossRefGoogle Scholar
  23. 23.
    Britan, A.B., Kortsenshtein, N.M.: Drop evaporation behind shock waves in dry foam. J. App. Mech. Tech. Phys. 3(44), 480–485 (1993)Google Scholar
  24. 24.
    Britan, A.B., Zinovik, I.N., Levin, V.A.: Measurement of gas suspension parameters behind a shock wave in foam. Fluid Dyn. 28(3), 400–405 (1993)CrossRefGoogle Scholar
  25. 25.
    Brakke, K.: The surface evolver. Exp. Math. 1 (1992) http://www.susqu.edu/facstaff/b/brake/evolver/
  26. 26.
    Weaire, D., Cox, S., Brake, K.: Liquid Foams. In: Colombo, P., Scheffler, M. (eds.) Cellular Ceramics. Wiley, Weinheim (2005)Google Scholar
  27. 27.
    Joshi, S.C., Lam, Y.C., Boey, F.Y.C., Tok, A.I.Y.: Power law fluids and Bingham plastics flow models for ceramic tape casting. J. Mater. Proc. Tech. 120(1), 215–225 (2002)CrossRefGoogle Scholar
  28. 28.
    Schmidt, E.M., Kahl, G.D.: Gaseous blast reducer. US Patent N4, 392412 (1983)Google Scholar
  29. 29.
    Shea, J.W., Pater, L.L.: Foam filled muzzle blast reducing device. US Patent 4, 454–798 (1984)Google Scholar
  30. 30.
    Krasinski, J.S.: Some aspects of the fluid dynamics of liquid–air foams of high dryness fraction. Prog. Aero. Sci. 29, 125–163 (1992)Google Scholar
  31. 31.
    Batchelor, G.K.: An Introduction to Fluid Dynamics. Cambridge University Press, Cambridge (1968)Google Scholar
  32. 32.
    van Wijngaarden, L.: One dimensional flow of liquids containing small gas bubbles. Ann. Rev. Fluid Mech. 4, 369–396 (1972)CrossRefGoogle Scholar
  33. 33.
    Goldfarb, I., Shreiber, I., Vafina, F.: Heat transfer effect on sound propagation in foam. J. Acoust. Soc. Am. 92, 2756–2769 (1992)Google Scholar
  34. 34.
    Goldfarb, I., Shreiber, I., Vafina, F.: On one experiment of determining the sound speed in a foam. Acoustica 80, 583–586 (1994A)Google Scholar
  35. 35.
    Goldfarb, I., Orenbach, Z., Shreiber, I., Vafina, F.: Sound and weak shock wave propagation in gas–liquid foams. Shock Waves 7, 77–88 (1997)Google Scholar
  36. 36.
    Rudinger, G.: Some properties of shock relaxation in gas flows carrying small particles. Phys. Fluids 7, 658–1711265 (1964)MathSciNetCrossRefGoogle Scholar
  37. 37.
    Rudinger, G.: Some effects of finite particle volume of the dynamics of gas–particle mixture. AIAA J. 3, 1217–1222 (1965)CrossRefGoogle Scholar
  38. 38.
    Kudinov, V.M., Palamarchuk, B.I., Gelfand, B.E., Gubin, S.A.: Shock waves in gas–liquid foams. Appl. Mech. 13(3), 279–283 (1977)Google Scholar
  39. 39.
    Borisov, A.A., Gelfand, B.E., Kudinov, V.M., Palamarchuk, B.I., Stepanov, V.V., Timofeev, E.I., Khomik, S.V.: Shock waves in water foams. Acta Astronaut. 5, 1027–1033 (1978)CrossRefGoogle Scholar
  40. 40.
    Borisov, A.A., Gelfand, B.E., Timofeev, E.I.: Shock waves in liquids containing gas babbles. Int. J. Multiphase Flow 9(5), 531–543 (1983)CrossRefGoogle Scholar
  41. 41.
    Weaver, P.M., Pratt, N.H.: Experiment study of shock structure in aqueous foams and the unsteady shock emergence at a foam/air boundary Current topics in shock waves. In: Kim, Y.W. (ed.) 17th International Symposium on Shock Waves and Shock Tube. AIP Conference Proceedings, vol. 208, pp. 819–824. Bethlehem, PA (1990)Google Scholar
  42. 42.
    Vasilev, E., Mitichkin, S., Testov, V., Haybo, H.: Pressure dynamics in the shock loading of the gas–liquid foams. J. Tech. Phys. 68(7), 19–23 (1998)Google Scholar
  43. 43.
    Kudinov, V.M., Palamarchuk, B.I., Vakhnenko, V.A., Cherkashin, A.V., Lebed, S.D., Malakhov, A.T.: Relaxation phenomena in foamy structure. In: 8th ICOGER, Minsk, pp. 96–118 (1981)Google Scholar
  44. 44.
    Britan, A., Ben-Dor, G., Shapiro, H., Liverts, M., Shreiber, I.: Drainage effects on shock wave propagating through aqueous foams. Colloids Surf. A Physicochem. Eng. Aspects 309, 137–150 (2007)CrossRefGoogle Scholar
  45. 45.
    Kudinov, V.M., Palamarchuk, B.I., Vakhnenko, V.A.: Attenuation of a strong shock wave in a two-phase medium. Sov. Phys. Dokl. 28(10), 842–842 (1983)Google Scholar
  46. 46.
    Palamarchik, B.I., Vakhnenko, B.A., Cherkashin, A.V., Lebed, S.G.: Vliania relaxacion procesov na zatuxanie udarnix woln v vodnix penax. Svarka i Rezka Vzrivom. Kiev: E.O. Paton’s Institute of Electric Welding, pp. 97–110 (1979, in Russian)Google Scholar
  47. 47.
    Panczak, T.D., Krier, H.: Shock propagation and blast attenuation through aqueous foams. J. Hazard. Mat. 14, 321–336 (1987)CrossRefGoogle Scholar
  48. 48.
    Zhdan, C.A.: Numerical modeling of the explosion of a high explosive charge (HE) in foam. Combust. Explos. Shock Waves 26(2), 221–227 (1990)CrossRefGoogle Scholar
  49. 49.
    Taylor, G.I.: The dynamics of the combustion products behind plane and spherical detonation fronts in explosives. Proc. Roy. Soc. Lond. A 200–235 (1950)Google Scholar
  50. 50.
    Hartman, W.F., Boughton, B.A., Larsen, M.E.: Blast mitigation capabilities of aqueous foam, SANDIA Rept., SAND2006-0533 (2006)Google Scholar
  51. 51.
    Vakhnenko, V.A., Kudinov, V.M., Palamarchuk, B.I.: Damping of strong shocks in relaxing media. Combust. Explos. Shock Waves 20(1), 97–103 (1984)CrossRefGoogle Scholar
  52. 52.
    Vakhnenko, V.A., Kudinov, V.M., Palamarchuk, B.I.: Effect of thermal relaxation of attenuation of shock waves in two-phase medium. Prikladnaya Mekhanika 18(12), 91–97 (1982, in Russian)Google Scholar
  53. 53.
    Palamarchuk, B.I. and Malakhov, A.T.: Zatuxanie udarnix voln v pene pri vzrive kondensirovannogo VV. Fizika Gorenia I Vzriva 6, 135–143 (1990, in Russian)Google Scholar
  54. 54.
    Palamarchuk, B.I., Malakhov, A.T.: The effect of medium properties and energy source characteristics on shock waves attenuation. In: International Symposium on “The use of explosion energy for manufacturing of metal materials with new properties”: Czechoslovakia, Gotvaldov, pp. 535–544 (1985, in Russian)Google Scholar
  55. 55.
    Palamarchuk, B.I.: Ob energeticheskom podobi zatuxania udarnix voln. Primenenie energii vzriva v svarochnoy texnike. Sbornik statei, E.O. Paton’s Institute of Electric Welding, Kiev, pp. 158–167 (1985, in Russian)Google Scholar
  56. 56.
    Crepeau, J., Needhan, C., Caipen, T., Grady, D., Harper, F.: First principles of the interaction of the blast waves with aqueous foams. In: Furnish, M.D., Chhabildas, L.C., Hixson, R.S. (eds.) Proceedings of Shock Compression of Condensed Matter, pp. 779–782. (2000)Google Scholar
  57. 57.
    Nigmatulin, R.I.: Dynamics of Multi-Phase System, vol. 1, no. 2. Hemisphere, NY (1990)Google Scholar
  58. 58.
    Britan, A.B., Vasilev, E.I., Kulikovsky, B.A.: Modeling the process of shock-wave attenuation by a foam screen. Combust. Explo. Shock Waves 30(3), 389–396 (1994)CrossRefGoogle Scholar
  59. 59.
    Chinnayya, A., Daniel, E., Saurel, R.: Modeling detonation waves in heterogeneous energetic materials. J. Comp. Phys. 196(2), 490–538 (2004)Google Scholar
  60. 60.
    Schwer, D.A., Kailasanath, K.: Direct comparison of particle-tracking and sectional approaches for shock driven flows. Int. J. Spray Combust. Dyn. 1(1), 1–37 (2009)Google Scholar
  61. 61.
    Stewart, H.B., Wendroff, B.: Two-phase flow: models and methods. J. Comput. Phys. 56, 363–409 (1984) Google Scholar
  62. 62.
    Baer, M., Nunziato, J.: A two-phase mixture theory for the deflagration-to-detonation transition (DDT) in reactive granular materials. Int. J. of Multiphase Flow 12(6), 861–889 (1986)Google Scholar
  63. 63.
    Baer, M.: A numerical study of shock wave reflections on low density foam. Shock Waves 2(2), 121–124 (1992)MathSciNetCrossRefGoogle Scholar
  64. 64.
    Seitz, M., Skews, B.: Effect of compressible foam properties on pressure amplification during shock wave impact. Shock Waves 15(3/4), 177–197 (2006)CrossRefGoogle Scholar
  65. 65.
    Schwendeman, D.W., Wahle, C.W., Kapila, A.K.: The Riemann problem and a high-resolution Godunov method for a model of compressible two-phase flow. J. Comput. Phys. 212, 490–526 (2006)Google Scholar
  66. 66.
    Del Pretre, E., Chinnayya, A., Domergue, L., Hadjadj, A., Haas, J.F.: Blast wave mitigation by dry aqueous foams. Shock Waves (2012, submitted) (doi:is not available yet)Google Scholar
  67. 67.
    Allen, R.M., Kirkpatrick, D.J., Longbottom, A.W., Milne, A.M., Bourne, N.K.: Experimental and numerical study of free-field blast mitigation. In: Shock Compression and Condensed Matter—2003. AIP Conf. Proc. 706(1):823–826 (2004)Google Scholar
  68. 68.
    Kapila, A.K., Menikoff, R., Bdzil, J.B., Son, S.F., Stewart, D.S.: Two-phase modeling of deflagration-to-detonation transition in granular materials: reduced equations. Phys. Fluids 13, 3002 (2001)CrossRefGoogle Scholar
  69. 69.
    Britan, A., Liverts, M. Shapiro, H., Ben-Dor, G.: Macro-mechanical modeling of blast-wave mitigation in foams. Part II: reliability of pressure measurements. Shock Wave J. (2012) doi: 10.1007/s00193-012-0402-y
  70. 70.
    Domergue, L., Nicolas, R., Marle, J.-C., Matthey, L., Daloisio, M., Buche, L., Hubert, C.: Shock wave attenuation in aqueous foam. In: Guarascio, M., Brebbia, C.A., Garzia, F. (eds.) Transactions of WIT: Safety and Security Eng. III, The Built Environment, vol. 108, pp. 83–92 (2009)Google Scholar
  71. 71.
    Winfield, F.H., Hill, D.A.: Preliminary research on the physical properties of aqueous foams and their blast attenuation characteristics. Suffield TN 389, Def. Res. Est. Ralston, Alberta, Canada (1977)Google Scholar
  72. 72.
    Kann, K.B.: Sound waves in foams. Colloids Surf. A Physicochem. Eng. Aspects 263, 315–319 (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • A. Britan
    • 1
  • H. Shapiro
    • 1
  • M. Liverts
    • 1
  • G. Ben-Dor
    • 1
    Email author
  • A. Chinnayya
    • 2
  • A. Hadjadj
    • 2
  1. 1.Faculty of Engineering Sciences, Protective Technologies R&D CenterBen-Gurion University of the NegevBeer ShevaIsrael
  2. 2.CORIA, Complexe de Recherche Interprofessionel de Recherche en Aérothermochimie, UMR CRNS 6614Saint Etienne du RouvrayFrance

Personalised recommendations