Advertisement

Shock Waves

, Volume 23, Issue 1, pp 39–53 | Cite as

Blast wave mitigation by dry aqueous foams

  • E. Del Prete
  • A. ChinnayyaEmail author
  • L. Domergue
  • A. Hadjadj
  • J.-F. Haas
Original Article

Abstract

This paper presents results of experiments and numerical modeling on the mitigation of blast waves using dry aqueous foams. The multiphase formalism is used to model the dry aqueous foam as a dense non-equilibrium two-phase medium as well as its interaction with the high explosion detonation products. New experiments have been performed to study the mass scaling effects. The experimental as well as the numerical results, which are in good agreement, show that more than an order of magnitude reduction in the peak overpressure ratio can be achieved. The positive impulse reduction is less marked than the overpressures. The Hopkinson scaling is also found to hold particularly at larger scales for these two blast parameters. Furthermore, momentum and heat transfers, which have the main dominant role in the mitigation process, are shown to modify significantly the classical blast wave profile and thereafter to disperse the energy from the peak overpressure due to the induced relaxation zone. In addition, the velocity of the fireball, which acts as a piston on its environment, is smaller than in air. Moreover, the greater inertia of the liquid phase tends to project the aqueous foam far from the fireball. The created gap tempers the amplitude of the transmitted shock wave to the aqueous foam. As a consequence, this results in a lowering of blast wave parameters of the two-phase spherical decaying shock wave.

Keywords

Blast wave Mitigation Aqueous foams Multiphase Modeling 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Allen, R.M., Kirkpatrick, D.J., Longbottom, A.W., Milne, A.M., Bourne, N.K.: Experimental and numerical study of free-field blast mitigation. In: M. Furnish, Y. Gupta, J. Forbes (eds.) Shock Compression of Condensed Matter, 20–25 July 2003, Portland, Oregon (USA), AIP Conference Proceedings, vol. 706, pp. 823–826 (2004)Google Scholar
  2. 2.
    Baer M.: A numerical study of shock wave reflections on low density foam. Shock Waves 2((2), 121–124 (1992)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Baer M., Nunziato J.: A two-phase mixture theory for the deflagration-to-detonation transition (DDT) in reactive granular materials. Intern. J. Multiph. Flow 12((6), 861–889 (1986)zbMATHCrossRefGoogle Scholar
  4. 4.
    Baker W.: Explosion in Air. University of Texas Press, Austin (1973)Google Scholar
  5. 5.
    Baudin, G., Serradeill, R.: Review of Jones-Wilkins-Lee equation of state. In: Soulard, L. (ed.) European Physical Journal Web of Conferences, New Models and Hydrocodes for Shock Wave Processes in Condensed Matter, 24–28 May 2010, Paris (France), vol. 10, p. 21 (2010)Google Scholar
  6. 6.
    Borisov A.A., Gelfand G.E., Kudinov V.M., Palamarchuk B.I., Stepanov V.V., Timofeev E.I., Khomik S.V.: Shock waves in water foams. Acta Astronaut. 5(11–12), 1027–1033 (1978)CrossRefGoogle Scholar
  7. 7.
    Britan A., Liverts M., Ben-Dor G.: Shock wave propagation through wet particulate foam. Colloids Surf A Physicochem Eng Aspects 382(1–3), 145–153 (2011)CrossRefGoogle Scholar
  8. 8.
    Britan A., Zinovik I., Levin V.: Breaking up foam with shock waves. Combust. Explos. Shock Waves 28((5), 550–557 (1992)CrossRefGoogle Scholar
  9. 9.
    Britan A.B., Ben-Dor G., Shapiro H., Liverts M., Shreiber I.: Drainage effects on shock wave propagating through aqueous foams. Colloids Surf. A Physicochem. Eng. Aspects 309(1–3), 137–150 (2007)CrossRefGoogle Scholar
  10. 10.
    Britan A.B., Vasil’ev E.I., Kulikovskii V.A.: Modeling the process of shock wave attenuation by a foam screen. Combust. Explos. Shock Waves 30(3), 389–396 (1994)CrossRefGoogle Scholar
  11. 11.
    Brode H.L.: Blast wave from a spherical charge. Phys. Fluids 2(2), 217–229 (1959)zbMATHCrossRefGoogle Scholar
  12. 12.
    Chinnayya A., Daniel E., Saurel R.: Modelling detonation waves in heterogeneous energetic materials. J. Comput. Phys. 196(2), 490–538 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Crepeau, J., Needham, C., Caipen, T., Grady, D., Harper, F.: First principles calculations of the interaction of blast waves with aqueous foams. In: Furnish, M., Chhabildas, L., Hixson, R. (eds.) Shock Compression of Condensed Matter, 27 June–2 July 1999, AIP Conference Proceedings, vol. 505, pp. 779–782. Snowbird, Utah (USA) (2000)Google Scholar
  14. 14.
    COOLPACK: A Collection of Simulation Tools for Refrigeration, 2000, Department of Mechanical Engineering, Technical University of Denmark. http://www.et.web.mek.dtu.dk/coolpack/uk/index.html
  15. 15.
    Domergue, L., Nicolas, R., Marle, J.C., Mathey, L., D’aloisio, M., Buche, L., Hubert, C.: Shock wave attenuation in aqueous foam. In: 3rd International Conference on Safety and Security Engineering, Book Series: WIT Transactions on the Built Environment, Safety and Security Engineering III, vol. 108, pp. 83–92. Rome, Italy (2009)Google Scholar
  16. 16.
    Gardiner B., Dlugogorski B., Jameson G., Chhabra R.: Yield stress measurements of aqueous foams in the dry limit. J. Rheol. 42(6), 1437–1450 (1998)CrossRefGoogle Scholar
  17. 17.
    Gelfand, B.E.: Attenuation of blast waves in two-phase mixtures. In: Proceedings of the International Symposium on Interdisciplinary Shock Wave Research, ISISW, 22–24 March. http://iswi.nuae.nagoya-u.ac.jp/ISISW/ISISW.html, pp. 150–166. Sendai, Japan (2004)
  18. 18.
    Gelfand B.E., Silnikov M.V.: Explosions and Blast Control. Asterion, Saint Petersburg (2004)Google Scholar
  19. 19.
    Goldfarb I., Orenbakh Z., Shreiber I., Vafina F.: Sound and weak shock wave propagation in gas–liquid foams. Shock Waves 7(2), 77–88 (1997)CrossRefGoogle Scholar
  20. 20.
    Hartman, W., Boughton, B., Larsen, M.: Blast mitigation capabilities of aqueous foam. Tech. Rep. SAND2006-0533, Sandia National Laboratories (2006)Google Scholar
  21. 21.
    Heuzé O.: Equations of state of detonation products: Influence of the repulsive intermolecular potential. Phys. Rev. A 34(1), 428–432 (1986)CrossRefGoogle Scholar
  22. 22.
    Heuzé, O.: An equation of state for detonation products for hydrocode calculations. In: 27th International Pyrotechnics Seminar (IPS-2000), 16–21 July, pp. 15–19. Grand Junction, Colorado (USA) (2000)Google Scholar
  23. 23.
    Johnson J.A., Solie D.J., Brown J.A., Gaffney E.S.: Shock response of snow. J. Appl. Phys. 73(10), 4852–4861 (1993)CrossRefGoogle Scholar
  24. 24.
    Kinney G., Graham K.: Explosives shocks in Air, 2nd edn. Springer, Berlin (1985)Google Scholar
  25. 25.
    Knudsen J.G., Gauvin W.H.: Fluid Mechanics and Heat Transfer, pp. 511. McGraw-Hill, New York (1958)Google Scholar
  26. 26.
    Lallemand M.H., Chinnayya A., Le Métayer O.: Pressure relaxation procedures for multiphase compressible flows. Int. J. Num. Methods Fluids 49(1), 1–56 (2005)zbMATHCrossRefGoogle Scholar
  27. 27.
    Larsen, M.: NEST containment calculator. Tech. Rep. SAND94-2030, Sandia National Laboratories (1994)Google Scholar
  28. 28.
    Le Métayer O., Massoni J., Saurel R.: Elaboration des lois d’état d’un liquide et de sa vapeur pour les modèles d’écoulements diphasiques. Int. J. Thermal Sci. 43(3), 265–276 (2004)CrossRefGoogle Scholar
  29. 29.
    Lee, E.L., Horning, H.C., Kury, J.W.: Adiabatic expansion of high explosives detonation products. Tech. Rep. TID 4500-UCRL 50422, Lawrence Radiation Lab., University of California, Livermore (1968)Google Scholar
  30. 30.
    Massoni J., Saurel R., Lefrançois A., Baudin G.: Modeling spherical explosions with aluminized energetic materials. Shock Waves 16(1), 75–92 (2006)zbMATHCrossRefGoogle Scholar
  31. 31.
    Needham C.E.: Blast Waves. Springer, Berlin (2006)Google Scholar
  32. 32.
    Omang M., Christensen S., Børve S., Trulsen J.: Height of burst explosions: a comparative study of numerical and experimental results. Shock Waves 19(2), 135–143 (2009)CrossRefGoogle Scholar
  33. 33.
    Ortiz C., Joseph D., Beavers G.: Acceleration of a liquid drop suddenly exposed to a high-speed airstream. Int. J. Multiph. Flow 30(2), 217–224 (2004)zbMATHCrossRefGoogle Scholar
  34. 34.
    Persson P.A., Holmberg R., Lee J.: Rock blasting and explosives engineering. CRC Press, Boca Raton (1994)Google Scholar
  35. 35.
    Petitpas F., Saurel R., Franquet E., Chinnayya A.: Modelling detonation waves in condensed energetic materials: Multiphase CJ conditions and multidimensional computations. Shock Waves 19(5), 377–401 (2009)zbMATHCrossRefGoogle Scholar
  36. 36.
    Plateau J.A.F.: Statique expérimentale et théorique des liquides soumis aux forces moléculaires. Gaultier-Villards, Paris (1873)Google Scholar
  37. 37.
  38. 38.
    Raspet, R.: Use of aqueous foam to mitigate demolition noise. Tech. Rep. N-112, United States Army of Corps of Engineers (1981)Google Scholar
  39. 39.
    Raspet R., Griffiths S.K.: The reduction of blast noise with aqueous foam. J. Acoust. Soc. Am 74(6), 1757–1763 (1983)CrossRefGoogle Scholar
  40. 40.
    Rouyer F., Pitois O., Lorenceau E., Louvet N.: Permeability of a bubble assembly: From the very dry to the wet limit. Phys. Fluids 22(4), 043302 (2010)CrossRefGoogle Scholar
  41. 41.
    Rudinger G.: Some properties of shock relaxation in gas flows carrying small particles. Phys. Fluids 7(5), 658–663 (1964)MathSciNetCrossRefGoogle Scholar
  42. 42.
    Schwer, D., Kailasanath, K.: Blast mitigation by water mist (3) Mitigation of confined and unconfined blasts. Tech. Rep. NRL/MR/6410–03-8658, Naval Research Lab (2003)Google Scholar
  43. 43.
    Schwer, D., Kailasanath, K.: Numerical simulation of the mitigation of unconfined explosion using water-mist. In: Proceedings of the Combustion Institute, vol. 31, pp. 2361–2369 (2007)Google Scholar
  44. 44.
    Seitz M., Skews B.: Effect of compressible foam properties on pressure amplification during shock wave impact. Shock Waves 15(3–4), 177–197 (2006)CrossRefGoogle Scholar
  45. 45.
    Sheffield, S., Engelke, R.: Shock Wave Science and Technology Reference Library, vol. 3, chap. Condensed-phase explosives: shock initiation and detonation phenomena, pp. 1–64. Springer, Berlin (2009)Google Scholar
  46. 46.
    Taylor, G.I.: The formation of a blast wave by a very intense explosion. In: Proceedings of the Royal Society London A, vol. 201, pp. 159–174 (1950)Google Scholar
  47. 47.
    Weaire D., Hutzler S.: The Physics of Foams. Oxford University Press, Oxford (1999)Google Scholar
  48. 48.
    Winfield, F., Hill, D.: Preliminary results on the physical properties of aqueous foams and their blast attenuating characteristics. Tech. Rep. DRES, Technical Note No. 389, Defense Research Establishment, Suffield, Ralston, Alberta, Canada (1977)Google Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • E. Del Prete
    • 1
    • 2
  • A. Chinnayya
    • 1
    Email author
  • L. Domergue
    • 2
    • 3
  • A. Hadjadj
    • 1
  • J.-F. Haas
    • 2
  1. 1.CORIA CNRS UMR 6614Site Universitaire du MadrilletSaint-Etienne du RouvrayFrance
  2. 2.CEA, DAM, DIFArpajon CedexFrance
  3. 3.CEA, DAMLe RipaultMontsFrance

Personalised recommendations