Skip to main content
Log in

Shock wave interactions with nano-structured materials: a molecular dynamics approach

  • Original Article
  • Published:
Shock Waves Aims and scope Submit manuscript

Abstract

Porous materials have long been known to be effective in blast mitigation strategies. Nano-structured materials appear to have an even greater potential for blast mitigation because of their high surface-to-volume ratio, a geometric factor which substantially attenuates shock wave propagation. A molecular dynamics approach was used to explore the effects of this remarkable property on the behavior of traveling shocks impacting on solid materials. The computational setup included a moving piston, a gas region, and a target solid wall with and without a porous structure. The materials involved were represented by realistic interaction potentials. The results indicate that the presence of a nano-porous material layer in front of the target wall reduced the stress magnitude and the energy deposited inside the solid by about 30 %, while at the same time substantially decreasing the loading rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gong M.W., Andreopoulos Y.: Shock wave impact on monolithic and composite material plates: the preferential aeroelastic response. J. Sound Vibration 313, 171–194 (2008)

    Article  Google Scholar 

  2. Gong M.W., Andreopoulos Y.: Coupled fluid–structure solver: the case of shock wave impact on monolithic and composite material plates. J. Comput. Phys. 228, 4400–4434 (2009). doi:10.1016/j.jcp.2009.03.009

    Article  MATH  Google Scholar 

  3. Subramaniam K., Nian W., Andreopoulos Y.: Response of an elastic structure subject to air shock considering fluid-structure interaction. Int. J. Impact Eng. 36, 965–974 (2009)

    Article  Google Scholar 

  4. Andreopoulos Y., Xanthos S., Subramaniam K.: Moving shocks through metallic grids: their interaction and potential for blast wave mitigation. Shock Waves 16(6), 455–466 (2007)

    Article  Google Scholar 

  5. Nian, W., Subramaniam, K., Andreopoulos, Y.: Response of an elastic structure subject to air shock considering fluid-structure interaction. J. Aerosp. Eng. 23, 176–187 (2010). ASCE. doi:10.1061/(ASCE)AS.1943-5525.0000022

    Google Scholar 

  6. Tsai D.H., Trevino S.F.: Thermal relaxation in a dense liquid under shock compression. Phys. Rev. A 24(5), 2743–2757 (1981)

    Article  Google Scholar 

  7. Holian B.L., Hoover W.G., Moran B., Straub G.K.: Shockwave structure via non-equilibrium molecular dynamics and Navier–Stokes continuum mechanics. Phys. Rev. A 22(6), 2798–2808 (1980)

    Article  Google Scholar 

  8. Holian B.L.: Modeling shock wave deformation via molecular dynamics. Phys. Rev. A 37(7), 2562–2672 (1988)

    Article  Google Scholar 

  9. Woo, M., Greber, I.: Molecular dynamics simulation of piston-driven shock wave in hard sphere gas. AIAA J. 37(2), 215–221, (1999). doi:10.2514/2.692

    Google Scholar 

  10. Hoover W.G.: Structure of a shock-wave front in a liquid. Phys. Rev. Lett. 42, 1531–1534 (1979)

    Article  Google Scholar 

  11. Schlamp, S., Hathorn, B.C., Hofmann, T.E., Sim, P.: Shock wave structure in dense nitrogen: Steady-state profile and unsteady processes. AIAA Paper 2005-5212 (2005)

  12. Sinkovits R.S., Sen S.: Nonlinear dynamics in granular columns. Phys. Rev. Lett. 74(14), 2686–2689 (1995)

    Article  Google Scholar 

  13. Kazemi-Kamyab V., Subramaniam K., Andreopoulos Y.: Stress transmission in porous materials impacted by shock waves. J. Appl. Phys. 109(1), 013523 (2011). doi:10.1063/1.3517791

    Article  Google Scholar 

  14. Seitz M.W., Skews B.W.: Effect of compressible foam properties on pressure amplification during shock wave impact. Shock Waves 15, 177–197 (2006)

    Article  Google Scholar 

  15. Seitz, M.W., Skews, B.W.: Shock impact on porous plugs with a fixed gap between the plug and a wall. In: Sturtevant, B., Shepherd, J. E., Hornung, H. G. (eds.) Proceedings of the 20th International Symposium on Shock Waves. World Scientific, Singapore (1996)

  16. Mazor G., Ben-Dor G., Igra O., Sorek S.: Shock wave interaction with cellular materials: I. Analytical investigation and governing equations. Shock Waves 3, 159–165 (1994)

    Article  MATH  Google Scholar 

  17. Baer M.R., Nunziato N.W.: A two-phase mixture theory for the deflagration-to-detonation transition in reactive granular materials. Int. J. Multiph. Flow 12, 861–889 (1986)

    Article  MATH  Google Scholar 

  18. Biot M.A.: General theory of three dimensional consolidation. J. Appl. Phys. 12, 155–164 (1941)

    Article  MATH  Google Scholar 

  19. Levy A., Sorek S., Ben-Dor G., Bear J.: Evolution of the balance equations in saturated thermoelastic porous media following abrupt simultaneous changes in pressure and temperature. Transport Porous Media 21, 241–268 (1995)

    Article  Google Scholar 

  20. Bear J., Bachmat Y.: Introduction to Modeling Transport Phenomena in Porous Media. Kluwer, Dordrecht (1990)

    Book  Google Scholar 

  21. Gubaidullin A.A., Britan A., Dudko D.N.: Air shock wave interaction with an obstacle covered by porous material. Shock Waves 13, 41–48 (2003)

    Article  MATH  Google Scholar 

  22. van deer Grinten, J.G.M.: An Experimental Study Of Shock-Induced Wave Propagation In Dry Water-Saturated, And Partially Saturated Porous Media. PhD Thesis, Applied Physics Department, Eindhoven University of Technology, The Netherlands (1987)

  23. Smeulders, D., van Dongen, M.E.H.: Linear waves and shock waves in flexible and rigid porous media. In: van Dongen, M.E.H. (ed.) Shock Wave Science and Technology Reference Library, vol. 1, Springer, Berlin (2007)

  24. Levy A., Ben-Dor G., Skews B.W., Sorek S.: Head-on collision of normal shock waves with rigid porous materials. Exp. Fluids 15, 183–190 (1993)

    Article  Google Scholar 

  25. van Dongen, M.E.H., Smeulders, D.M.J., Kitarnura, T., Takayama, K.: On the modeling of wave phenomena in permeable foam. In: Brun, R., Dumitrescu, L.Z. (eds.) Proceedings 19th International Symposium on Shock Waves, Marseille, vol. III, pp. 163–168. Springer (1995)

  26. Yasuhara M., Watanabe S., Kitagawa K., Yasue T., Mizutani M.: Experiment on effect s of porosity in the interaction of shock wave and foam. Jpn. Soc. Mech. Eng. Int. J. Ser. B 39, 287–293 (1996)

    Google Scholar 

  27. Ben-Dor G., Britan A., Elperin T., Igra O., Jiang J.P.: Experimental investigation of the interaction between weak shock waves and granular layers. Exp. Fluids 22, 432–443 (1997)

    Article  Google Scholar 

  28. Britan A., Ben-Dor G.: Gas filtration during the impact of weak shock waves on granular layers. Int. J. Multiph. Flow 32, 623–631 (2006)

    Article  MATH  Google Scholar 

  29. Kitagawa K., Takayama K., Yasuhara M.: Attenuation of shock waves propagating in polyurethane foams. Shock Waves 15, 437–445 (2006)

    Article  Google Scholar 

  30. Allen M.P., Tildesley D.J.: Molecular Simulation of Liquids. Oxford University Press, Oxford (1987)

    Google Scholar 

  31. Koplik J., Banavar J.R.: Continuum deductions from molecular hydrodynamics. Annu. Rev. Fluid Mech. 27, 257–292 (1995)

    Article  Google Scholar 

  32. Stankovic I., Hess S., Kroger M.: Structural changes and viscoplastic behavior of a generic embedded-atom model metal in steady shear flow. PHYSICAL REVIEW E 69, 021509 (2004)

    Article  Google Scholar 

  33. Hess S., Kroger M.: Thermophysical properties of gases, liquids and solids composed of particles interacting with a short-range attractive potential. Phys. Rev. E 64, 011201 (2001)

    Article  Google Scholar 

  34. Hess S., Kroger M.: Elastic and Plastic Behavior of Model Solids, TECHNISCHE MECHANIK, Band 22, Heft 2 (2002)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Andreopoulos.

Additional information

Communicated by A. Hadjadj.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Al-Qananwah, A.K., Koplik, J. & Andreopoulos, Y. Shock wave interactions with nano-structured materials: a molecular dynamics approach. Shock Waves 23, 69–80 (2013). https://doi.org/10.1007/s00193-012-0397-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00193-012-0397-4

Keywords

Navigation