Skip to main content
Log in

A thermochemically derived global reaction mechanism for detonation application

  • Original Article
  • Published:
Shock Waves Aims and scope Submit manuscript

Abstract

A 4-species 4-step global reaction mechanism for detonation calculations is derived from detailed chemistry through thermochemical approach. Reaction species involved in the mechanism and their corresponding molecular weight and enthalpy data are derived from the real equilibrium properties. By substituting these global species into the results of constant volume explosion and examining the evolution process of these global species under varied conditions, reaction paths and corresponding rates are summarized and formulated. The proposed mechanism is first validated to the original chemistry through calculations of the CJ detonation wave, adiabatic constant volume explosion, and the steady reaction structure after a strong shock wave. Good agreement in both reaction scales and averaged thermodynamic properties has been achieved. Two sets of reaction rates based on different detailed chemistry are then examined and applied for numerical simulations of two-dimensional cellular detonations. Preliminary results and a brief comparison between the two mechanisms are presented. The proposed global mechanism is found to be economic in computation and also competent in description of the overall characteristics of detonation wave. Though only stoichiometric acetylene–oxygen mixture is investigated in this study, the method to derive such a global reaction mechanism possesses a certain generality for premixed reactions of most lean hydrocarbon mixtures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ρ :

Mass density

p :

Pressure

T :

Temperature

T 0 :

Reference temperature, T 0 = 298 K

θ :

Natural logarithm of density, θ = ln ρ

\({\xi}\) :

Reciprocal of temperature, \({\xi=10^3/{\rm T}}\)

t :

Time

e :

Total energy per unit mass

R u :

Universal gas constant

Ea:

Activation energy

H :

Mean molar enthalpy

H i :

Molar enthalpy of ith species

W :

Mean molecular weight

W i :

Molecular weight of ith species

λ :

Mole fraction

[X]:

Molar concentration of species X

δ :

Stoichiometric coefficient

s :

Reaction order

K c :

Equilibrium constant

k :

Reaction rate constant

Ω :

Chemical production rate

χ :

Stability parameter

References

  1. Lutz, A.E., Kee, R.J., Miller, J.A., Dwyer, H.A., Oppenheim, A.K.: Dynamic effects of autoignition centers for hydrogen and C1,2-hydrocarbon fuels. In: 22nd Symposium (International) Combustion, pp. 1683–1693 (1988)

  2. Miller J.A., Bowman C.T.: Mechanism and modeling of nitrogen chemistry in combustion. Prog. Energy Combust. Sci. 15, 287–338 (1989)

    Article  Google Scholar 

  3. Konnov A.A.: Implementation of the NCN pathway of prompt-NO formation in the detailed reaction mechanism. Combust. Flame. 156, 2093–2105 (2009)

    Article  Google Scholar 

  4. San Diego mechanism. http://web.eng.ucsd.edu/mae/groups/combustion/cermech (2006)

  5. Petrova M.V., Williams F.A.: A small detailed chemical-kinetic mechanism for hydrocarbon combustion. Combust. Flame. 144, 526–544 (2006)

    Article  Google Scholar 

  6. Turanyi T.: Sensitivity analysis of complex kinetic systems: tools and applications. J. Math. Chem. 5, 203–248 (1990)

    Article  MathSciNet  Google Scholar 

  7. Turanyi T.: Applications of sensitivity analysis to combustion chemistry. Reliab. Eng. Syst. Safe. 57, 41–48 (1997)

    Article  Google Scholar 

  8. Massias A., Diamantis D., Mastorakos E., Goussis D.A.: An algorithm for the construction of global reduced mechanisms with CSP data. Combust. Flame. 117, 685–708 (1999)

    Article  Google Scholar 

  9. Lu T.F., Ju Y.G., Law C.K.: Complex CSP for chemistry reduction and analysis. Combust. Flame. 126, 55–1445 (2001)

    Article  Google Scholar 

  10. Lu T.F., Law C.K.: A directed relation graph method for mechanism reduction. Proc. Combust. Inst. 30, 1333–1341 (2005)

    Article  Google Scholar 

  11. Pepiot-Desjardins P., Pitsch H.: An efficient error-propagation-based reduction method for large chemical kinetic mechanisms. Combust. Flame. 154, 67C81 (2008)

    Google Scholar 

  12. Bhattacharjee B., Schwer D.A.: Optimally-reduced kinetic models: reaction elimination in large-scale kinetic mechanisms. Combust. Flame. 135, 191–208 (2003)

    Article  Google Scholar 

  13. Varatharajan B., Williams F.A.: Chemical-kinetic descriptions of high-temperature ignition and detonation of acetylene–oxygen-diluent systems. Combust. Flame. 125, 624–645 (2001)

    Article  Google Scholar 

  14. Turanyi A., Tomlin A., Pilling M.: On the error of the quasi-steady-state approximation. J. Phys. Chem. 97, 163–172 (1993)

    Article  Google Scholar 

  15. Lam S.H., Goussis D.A.: The CSP method for simplifying kinetics. Int. J. Chem. Kinet. 26, 46l–468 (1994)

    Article  Google Scholar 

  16. Maas U., Pope S.B.: Simplifying chemical-kinetics intrinsic low-dimensional manifolds in composition space. Combust. Flame. 88, 239–264 (1992)

    Article  Google Scholar 

  17. Varatharajan B., Petrova M., Williams F.A., Tangirala V.: Two-step chemical-kinetic descriptions for hydrocarbon-oxygen-diluent ignition and detonation applications. Proc. Combust. Inst. 30, 1869–1877 (2005)

    Article  Google Scholar 

  18. Sichel M., Tonello N.A., Oran E.S., Jones D.A.: A two-step kinetics model for numerical simulation of explosions and detonations in H2–O2 mixtures. Proc. R. Soc. Lond. A 458, 49–82 (2002)

    Article  MATH  Google Scholar 

  19. Westbrook C.K., Dryer F.L.: Chemical kinetic modeling of hydrocarbon combustion. Prog. Energy Combust. Sci. 10, 1–57 (1984)

    Article  Google Scholar 

  20. Jones W.P., Lindstedt R.P.: Global reaction schemes for hydrocarbon combustion. Combust. Flame. 73, 233–249 (1988)

    Article  Google Scholar 

  21. Andersen J., Rasmussen C.L., Giselsson T., Glarborg P.: Global combustion mechanisms for use in CFD modeling under oxy-fuel conditions. Energy Fuels 23, 1379–1389 (2009)

    Article  Google Scholar 

  22. Fickett W., Jacobson J.D., Schott G.L.: Calculated pulsating one-dimensional detonations with induction-zone kinetics. AIAA J. 10, 514–516 (1972)

    Article  Google Scholar 

  23. He L.T., Lee J.H.S.: The dynamical limit of one-dimensional detonations. Phys. Fluids. 7, 1151–1158 (1995)

    Article  MATH  Google Scholar 

  24. Short M., Wang D.Y.: On the dynamics of pulsating detonations. Combust. Theory Model. 5, 343–352 (2001)

    Article  MATH  Google Scholar 

  25. Daimon Y., Matsuo A.: Detailed features of one-dimensional. Detonations. Phys. Fluids. 15, 112–122 (2003)

    Article  MathSciNet  Google Scholar 

  26. Clavin P., He L.T.: Stability and nonlinear dynamics of one-dimensional overdriven detonations in gases. J. Fluid Mech. 306, 353–378 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  27. Short M., Sharpe J.: Pulsating instability of detonations with a two-step chain-branching reaction model: theory and numerics. Combust. Theory Model. 7, 401–416 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  28. Ng H.D., Radulescu M.I., Higgins A.J., Nikiforakis N., Lee J.H.S.: Numerical investigation of the instability for one-dimensional Chapman-Jouguet detonations with chain-branching kinetics. Combust. Theory Model. 9, 385–401 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  29. Dold J.W., Kapila A.K.: Comparison between shock initiations of detonation using thermally-sensitive and chain-branching chemical models. Combust. Flame. 85, 185–194 (1991)

    Article  Google Scholar 

  30. Short M., Quirk J.J.: On the nonlinear stability and detonability limit of a detonation wave for a model three-step chain-branching reaction. J. Fluid Mech. 339, 89–119 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  31. Ng H.D., Lee J.H.S.: Direct initiation of detonation with a multi-step reaction scheme. J. Fluid Mech. 476, 179–211 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  32. Liang Z., Bauwens L.: Cell structure and stability of detonations with a pressure dependent chain branching reaction rate model. Combust. Theory Model. 9, 93–112 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  33. Liang Z., Browne S., Deiterding R., Shepherd J.E.: Detonation front structure and the competition for radicals. Proc. Combust. Inst. 31, 2445–2453 (2007)

    Article  Google Scholar 

  34. Lu T.F., Law C.K.: Towards accommondating realistic fuel chemistry in large-scale computations. Prog. Energy Combust. Sci. 35, 192–215 (2008)

    Article  Google Scholar 

  35. Khokhlov A.M., Oran E.S.: Numercial simulation of detonation initiation in a flame brush: the role of hot spots. Combust. Flame. 119, 400–416 (1999)

    Article  Google Scholar 

  36. Radulescu M.I., Sharpe G.J., Law C.K., Lee J.H.S.: The hydrodynamic structure of unstable cellular detonations. J. Fluid Mech. 580, 31–81 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  37. Radulescu M.I., Lee J.H.S.: The failure mechanism of gaseous detonations: experiments in porous wall tubes. Combust. Flame. 131, 29–46 (2002)

    Article  Google Scholar 

  38. Zhu Y., Chao J., Lee J.H.S.: An experimental investigation of the propagation mechanism of critical deflagration waves that lead to the onset of detonation. Proc. Combust. Inst. 31, 2455–2462 (2007)

    Article  Google Scholar 

  39. Sharpe J., Falle S.A.E.G.: One-dimensional nonlinear stability of pathological detonations. J. Fluid Mech. 414, 339–366 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  40. Pintgen F., Eckett C.A., Austin J.M., Shepherd J.E.: Direct observations of reaction zone structure in propagating detonations. Combust. Flame. 133, 211–229 (2003)

    Article  Google Scholar 

  41. Fickett W., Davis W.C.: Detonation. Dover Publications, New York (1979)

    Google Scholar 

  42. Kee, R.J., Rupley, F.M., Meeks, E., Miller, J.A.: CHEMKIN-III: a Fortran chemical kinetics package for the analysis of gas phase chemical and plasma kinetics. Tech. Report SAND96-8216 (1996)

  43. Morley, C.: Gaseq: a chemical equilibrium program for Windows. http://www.c.morley.dsl.pipex.com

  44. Schultz, E., Shepherd, J.: Validation of detailed reaction mechanisms for detonation simulation. Tech. Report FM99-5, GALCIT (2000)

  45. Sun M., Takayama K.: Conservative smoothing on an adaptive quadrilateral grid. J. Comp. Phys. 151, 479–497 (1999)

    Article  Google Scholar 

  46. Kaneshige, M., Shepherd, J.: Detonation database. Tech. Report FM97-8, GALCIT (1999)

  47. Ng H.D., Botros B.B., Chao J., Yang J.M., Nikiforakis N., Lee J.H.S.: Head-on collision of a detonation with a planar shock wave. Shock Waves. 15, 341–352 (2006)

    Article  MATH  Google Scholar 

  48. Botros B.B., Ng H.D., Zhu Y., Ju Y., Lee J.H.S.: The evolution and cellular structure of a detonation subsequent to a head-on interaction with a shock wave. Combust. Flame. 151, 573–580 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Yang.

Additional information

Communicated by S. Dorofeev.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhu, Y., Yang, J. & Sun, M. A thermochemically derived global reaction mechanism for detonation application. Shock Waves 22, 363–379 (2012). https://doi.org/10.1007/s00193-012-0375-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00193-012-0375-x

Keywords

Navigation