Skip to main content
Log in

Characteristics of unsteady type IV shock/shock interaction

  • Original Article
  • Published:
Shock Waves Aims and scope Submit manuscript

Abstract

Characteristics of the unsteady type IV shock/shock interaction of hypersonic blunt body flows are investigated by solving the Navier–Stokes equations with high-order numerical methods. The intrinsic relations of flow structures to shear, compression, and heating processes are studied and the physical mechanisms of the unsteady flow evolution are revealed. It is found that the instantaneous surface-heating peak is caused by the fluid in the “hot spot” generated by an oscillating and deforming jet bow shock (JBS) just ahead of the body surface. The features of local shock/boundary layer interaction and vortex/boundary layer interaction are clarified. Based on the analysis of flow evolution, it is identified that the upstream-propagating compression waves are associated with the interaction of the JBS and the shear layers formed by a supersonic impinging jet, and then the interaction of the freestream bow shocks and the compression waves results in entropy and vortical waves propagating to the body surface. Further, the feedback mechanism of the inherent unsteadiness of the flow field is revealed to be related to the impinging jet. A feedback model is proposed to reliably predict the dominant frequency of flow evolution. The results obtained in this study provide physical insight into the understanding of the mechanisms relevant to this complex flow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Edney, B.: Anomalous heat transfer and pressure distributions on blunt bodies at hypersonic speeds in the presence of an impinging shock. Aeronautical Research Institute of Sweden, FFA Report No. 115, (1968)

  2. Holden M.S.: Shock–shock boundary layer interaction. AGARD Rep. 764, (1989)

  3. Wieting A.R., Holden M.S.: Experimental shock-wave interference heating on a cylinder at Mach 6 and 8. AIAA J. 27, 1557–1565 (1989)

    Article  Google Scholar 

  4. Holden, M.S., Moselle, J.R., Lee, J.: Studies of aerothermal loads generated in regions of shock/shock interaction in hypersonic flow. NASA CR-181893 (1991)

  5. Sanderson, S.R.: Shock wave interaction in hypervelocity flow. PhD thesis, California Institute of Technology (1995)

  6. Sanderson S.R., Hornung H.G., Sturtevant B.: Aspects of planar, oblique and interacting shock waves in an ideal dissociating gas. Phys. Fluids 15, 1638–1649 (2003)

    Article  MathSciNet  Google Scholar 

  7. Klopfer, G.H., Yee, H.C.: Viscous hypersonic shock-on-shock interaction on blunt cowl lips. AIAA Paper 88-0233 (1988)

  8. Thareja R.R., Stewart J.R., Hassan O., Morgan K., Peraire J.: A point implicit unstructured grid solver for the Euler and Navier-Stokes equations. Int. J. Numer. Meth. Fluids 9, 405–425 (1989)

    Article  MATH  Google Scholar 

  9. Zhong X.: Application of essentially nonoscillatory schemes to unsteady hypersonic shock–shock interference heating problems. AIAA J. 32, 1606–1616 (1994)

    Article  MATH  Google Scholar 

  10. Gaitonde D., Shang J.S.: On the structure of an unsteady type IV interaction at Mach 8. Comput. Fluids 24, 469–485 (1995)

    Article  MATH  Google Scholar 

  11. Lind C.A., Lewis M.J.: Computational analysis of the unsteady type IV shock interaction of blunt body flows. J. Prop. Power 12, 127–133 (1996)

    Article  Google Scholar 

  12. Furumoto, G.H., Zhong, X.: Numerical simulation of viscous unsteady type IV shock-shock interaction with thermochemical nonequilibrium. AIAA Paper 97-0982 (1997)

  13. Yamamoto S., Kano S., Daiguji H.: An efficient CFD approach for simulating unsteady hypersonic shock–shock interference flows. Comput. Fluids 27, 571–580 (1998)

    Article  MATH  Google Scholar 

  14. Panaras A.G., Drikakis D.: High-speed unsteady flows around spiked-blunt bodies. J. Fluid Mech. 632, 69–96 (2009)

    Article  MATH  Google Scholar 

  15. Panaras A.G., Drikakis D.: Physical and numerical aspects of the high-speed unsteady flow around concave axisymmetric bodies. CEAS Space J. 1, 23–32 (2011)

    Article  Google Scholar 

  16. Chu B.T., Kovásznay L.S.G.: Non-linear interactions in a viscous heat-conducting compressible gas. J. Fluid Mech. 3, 494–514 (1958)

    Article  MathSciNet  Google Scholar 

  17. Wu J.Z., Ma H.Y., Zhou M.D.: Vorticity and Vortex Dynamics. Springer, (2006)

  18. Ho C.M., Nosseir N.S.: Dynamics of an impinging jet. Part 1. The feedback phenomenon. J. Fluid Mech. 105, 119–142 (1981)

    Article  Google Scholar 

  19. Tam C.K.W., Ahuja K.K.: Theoretical model of discrete tone generation by impinging jets. J. Fluid Mech. 214, 67–87 (1990)

    Article  MathSciNet  Google Scholar 

  20. Krothapalli A., Rajkuperan E., Alvi F., Lourenco L.: Flow field and noise characteristics of a supersonic impinging jet. J. Fluid Mech. 392, 155–181 (1999)

    Article  MATH  Google Scholar 

  21. Kim S.I., Park S.O.: Oscillatory behavior of supersonic impinging jet flows. Shock Waves 14, 259–272 (2005)

    Article  MATH  Google Scholar 

  22. Rowley C.W., Colonius T., Basu A.J.: On self-sustained oscillations in two-dimensional compressible flow over rectangular cavities. J. Fluid Mech. 455, 315–346 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  23. Poinsot T.J., Lele S.K.: Boundary conditions for direct simulations of compressible viscous flows. J. Comput. Phys. 101, 104–129 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  24. Jiang G.S., Shu C.W.: Efficient implementation of weighted ENO schemes. J. Comput. Phys. 126, 202–228 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  25. Shu C.W., Osher S.: Efficient implementation of essentially non-oscillatory shock-capturing schemes. J. Comput. Phys. 77, 439–471 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  26. Zhang S., Zhang Y.T., Shu C.W.: Multistage interaction of a shock vortex and a strong vortex. Phys. Fluids 17, 116101 (2005)

    Article  MathSciNet  Google Scholar 

  27. Freund J.B., Lele S.K., Moin P.: Compressibility effects in a turbulent annular mixing layer. Part 1. J. Fluid Mech. 421, 229–267 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  28. Pantano C., Sarkar S.: A study of compressibility effects in the high-speed turbulent shear layer using direct simulation. J. Fluid Mech. 451, 329–371 (2002)

    Article  MATH  Google Scholar 

  29. Xu C.Y., Chen L.W., Lu X.Y.: Large-eddy simulation of the compressible flow past a wavy cylinder. J. Fluid Mech. 665, 238–273 (2010)

    Article  MATH  Google Scholar 

  30. Simon F., Deck S., Guillen P., Sagaut P., Merlen A.: Numerical simulation of the compressible mixing layer past an axisymmetric trailing edge. J. Fluid Mech. 591, 215–253 (2007)

    Article  MATH  Google Scholar 

  31. Ragab S.A., Wu J.L.: Linear instabilities in two-dimensional compressible mixing layers. Phys. Fluids A 1, 957–966 (1989)

    Article  Google Scholar 

  32. Hamman C.W., Klewicki J.C., Kirby R.M.: On the Lamb vector divergence in Navier–Stokes flows. J. Fluid Mech. 610, 261–284 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  33. Humble R.A., Scarano F., van Oudheusden B.W.: Unsteady aspects of an incident shock wave/turbulent boundary layer interaction. J. Fluid Mech. 635, 47–74 (2009)

    Article  MATH  Google Scholar 

  34. Chen L.W., Xu C.Y., Lu X.Y.: Numerical investigation of the compressible flow past an aerofoil. J. Fluid Mech. 643, 97–126 (2010)

    Article  MATH  Google Scholar 

  35. Inoue O.: Propagation of sound generated by weak shock–vortex interaction. Phys. Fluids 12, 1258–1261 (2000)

    Article  MATH  Google Scholar 

  36. Hardy, B., Atassi, H.M.: Interaction of acoustic, entropic, and vortical waves with a plane shock. AIAA Paper 97-1614 (1997)

  37. Meyer K.E., Pedersen J.M., Özcan O.: A turbulent jet in crossflow analysed with proper orthogonal decomposition. J. Fluid Mech. 583, 199–227 (2007)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y.-B. Chu.

Additional information

Communicated by F. Lu.

Electronic Supplementary Material

The Below is the Electronic Supplementary Material.

ESM 1 (PDF 320 kb)

ESM 2 (PDF 220 kb)

ESM 3 (MPG 1310 kb)

ESM 4 (MPG 1006 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chu, YB., Lu, XY. Characteristics of unsteady type IV shock/shock interaction. Shock Waves 22, 225–235 (2012). https://doi.org/10.1007/s00193-012-0366-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00193-012-0366-y

Keywords

Navigation