Advertisement

Shock Waves

, Volume 23, Issue 1, pp 91–101 | Cite as

Numerical study of shock-wave mitigation through matrices of solid obstacles

  • A. ChaudhuriEmail author
  • A. Hadjadj
  • O. Sadot
  • G. Ben-Dor
Original Article

Abstract

Shock-wave propagation through different arrays of solid obstacles and its attenuation are analyzed by means of numerical simulations. The two-dimensional compressible Navier–Stokes equations are solved using a fifth-order weighted essentially non-oscillatory scheme, in conjunction with an immersed-boundary method to treat the embedded solids within a cartesian grid. The present study focuses on the geometrical aspects of the solid obstacles, particularly at lower effective flow area, where the frictional forces are expected to be important. The main objective is to analyze the controlling mechanism for shock propagation and attenuation in complex inhomogeneous and porous medium. Different parameters are investigated such as the geometry of the obstacles, their orientation in space as well as the relaxation lengths between two consecutive columns. The study highlights a number of interesting phenomena such as compressible vortices and shock–vortex interactions that are produced in the post-shock region. This also includes shock interactions, hydrodynamic instabilities and non-linear growth of the mixing. Ultimately, the Kelvin–Helmholtz instability invokes transition to a turbulent mixing region across the matrix columns and eddies of different length scales are generated in the wake region downstream of the solid blocks. The power spectrum of instantaneous dynamic pressure shows the existence of a wide range of frequencies which scales nearly with f −5/3. In terms of shock attenuation, the results indicate that the staggered matrix of reversed triangular prism (where the base of the triangular prism is facing the incoming shock) is the most efficient arrangement. In this case, both static and dynamic pressure impulses show significant reduction compared to the other studied configurations, which confirms the effectiveness of this type of barrier configuration. Furthermore, the use of combination of reverse–reverse arrangement of triangular prism obstacle maze is found more effective compared to the forward–reverse or forward–forward arrangements.

Keywords

Immersed boundary method Shock attenuation Shock/obstacles interaction WENO scheme 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Vasilev E.I., Mitichkin S.Yu., Testov V.G., Haibo H.: Pressure dynamics during shock loading of aqueous foams. Tech. Phys. 43(7), 761–765 (1998)CrossRefGoogle Scholar
  2. 2.
    Ball G.J., East R.A.: Shock and blast attenuation by aqueous foam barriers: influences of barrier geometry. Shock Waves 9, 37–47 (1999)zbMATHCrossRefGoogle Scholar
  3. 3.
    Surov V.S.: Reflection of an air shock wave from a foam layer. High Temp. 38(1), 97–105 (2000)CrossRefGoogle Scholar
  4. 4.
    Britan A., Ben-Dor G., Shapiro H., Liverts M., Shreiber I.: Drainage effects on shock wave propagating through aqueous foams. Colloids Surf. A Physicochem. Eng. Aspects 309, 137150 (2007)CrossRefGoogle Scholar
  5. 5.
    Jourdan G., Biamino L., Mariani C., Blanchot C., Daniel E., Massoni J., Houas L., Tosello R., Praguine D.: Attenuation of a shock wave passing through a cloud of water droplets. Shock Waves 20, 285296 (2010)CrossRefGoogle Scholar
  6. 6.
    Hattingh T.S., Skews B.W.: Experimental investigation of the interaction of shock waves with textiles. Shock Waves 11, 115–123 (2001)CrossRefGoogle Scholar
  7. 7.
    Gubaidullin A.A., Dudko D.N., Urmancheev S.F.: Modeling of the interaction between an air shock wave and a porous screen. Combust. Explos. Shock Waves 36(4), 496–505 (2000)CrossRefGoogle Scholar
  8. 8.
    Gubaidullin A.A., Britan A., Dudko D.N.: Air shock wave interaction with an obstacle covered by porous material. Shock Waves 13, 41–48 (2003)zbMATHCrossRefGoogle Scholar
  9. 9.
    Boldyreva O.Yu., Gubaidullin A.A., Dudko D.N., Kutushev A.G.: Numerical study of the transfer of shock-wave loading to a screened flat wall through a layer of a powdered medium and a subsequent air gap. Combust. Explos. Shock Waves 43(1), 114–123 (2007)CrossRefGoogle Scholar
  10. 10.
    Britan A., Ben-Dor G., Igra O., Shapiro H.: Shock waves attenuation by granular filters. Int. J. Multiph. Flow 27, 617–634 (2001)zbMATHCrossRefGoogle Scholar
  11. 11.
    Bakken J., Slungaard T., Engebretsen T., Christensen S.O.: Attenuation of shock waves by granular filters. Shock Waves 13, 33–40 (2003)CrossRefGoogle Scholar
  12. 12.
    Andreopoulos Y., Xanthos S., Subramaniam K.: Moving shocks through metallic grids: their interaction and potential for blast wave mitigation. Shock Waves 16, 455–466 (2007)CrossRefGoogle Scholar
  13. 13.
    Sasoh A., Matsuoka K., Nakashio K., Timofeev E., Takayama K., Voinovich P., Saito T., Hirano S., Ono S., Makino Y.: Attenuation of weak shock waves along pseudo-perforated walls. Shock Waves 8, 149–159 (1998)CrossRefGoogle Scholar
  14. 14.
    Britan A., Karpov A.V., Vasiev E.I., Igra O., Ben-Dor G., Shapiro E.: Experimental and numerical study of shock wave interaction with perforated plates. J. Fluids Eng. 126, 399–409 (2004)CrossRefGoogle Scholar
  15. 15.
    Britan A., Igra O., Ben-Dor G., Shock H.: wave attenuation by grids and orifice plates. Shock Waves 16, 1–15 (2006)CrossRefGoogle Scholar
  16. 16.
    Seeraj S., Skews B.W.: Dual-element directional shock wave attenuators. Exp. Thermal Fluid Sci. 33, 503–516 (2009)CrossRefGoogle Scholar
  17. 17.
    Rogg B., hermann D., Adomeit G.: Shock-induced flow in regular arrays of cylinders and packed beds. Int. J. Heat Mass Transf. 28(12), 2285–2298 (1985)CrossRefGoogle Scholar
  18. 18.
    Skews B.W., Draxl M.A., Felthun L., Seitz M.W.: Shock wave trapping. Shock Waves 8, 23–28 (1998)zbMATHCrossRefGoogle Scholar
  19. 19.
    Suzuki, K., Himeki, H., Watanuki, T., Abe, T.: Experimental studies on characteristics of shock wave propagation through cylinder array, The ISAS Report No. 676, March (2000)Google Scholar
  20. 20.
    Abe, A., Takayama, K.: Attenuation of shock waves propagating over arrayed spheres. In: Takayama, K., Saito, T., Kleine, H., Timofeev, E. (eds.) Proceedings of 24th International Congress High-Speed Photography and Photonic, Sendai, Japan: SPIE The international Society for Optical Engineering 582588 (2000)Google Scholar
  21. 21.
    Honghui, S., Yamamura, K.: The interaction between shock waves and solid spheres arrays in a shock tube. Acta Mech. Sinica 20, 3 (2004)Google Scholar
  22. 22.
    Friend, W.H.: The interaction of a plane shock with an inclined perforated plate. UTIA Technical Note 25 (1958)Google Scholar
  23. 23.
    Wilson, J., Chima, R.V., Skews, B.W.: Transmission and incidence losses for a slotted plate, NASA/TM1998-207420Google Scholar
  24. 24.
    Berger S., Sadot O., Ben-Dor G.: Experimental investigation on the shock-wave load attenuation by geometrical means. Shock waves 20(1), 29–40 (2010)CrossRefGoogle Scholar
  25. 25.
    Naiman H., Knight D.D.: The effect of porosity on interaction with a rigid, porous barrier. Shock Waves 16, 321–337 (2007)zbMATHCrossRefGoogle Scholar
  26. 26.
    Chaudhuri A., Hadjadj A., Chinnayya A.: On the use of immersed boundary methods for shock/obstacle interactions. J. Comput. Phys. 230, 1731–1748 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  27. 27.
    Glazer E., Sadot O., Hadjadj A., Chaudhuri A.: Velocity scaling of a shock wave reflected off a circular cylinder. Phys. Rev. E 83, 066317 (2011)CrossRefGoogle Scholar
  28. 28.
    Chaudhuri, A., Hadjadj, A., Sadot, O., Glazer, E.: Computational study of shock-wave interaction with solid obstacles using immersed boundary methods. Int. J. Num. Method Eng. doi: 10.1002/nme.3271 (2011)
  29. 29.
    Jiang G., Shu C.W.: Efficient implementation of weighted ENO schemes. J. Comput. Phys. 126, 202–228 (1996)MathSciNetzbMATHCrossRefGoogle Scholar
  30. 30.
    Peskin, C.S.: Flow patterns around heart valves: a digital computer method for solving the equations of motion, PhD thesis, Physiol., Albert Einstein Coll. Med., vol. 378, pp. 72–30, Univ. Microfilms (1972)Google Scholar
  31. 31.
    Mittal R., Iaccarino G.: Immersed boundary methods. Annu. Rev. Fluid Mech. 37, 239–261 (2005)MathSciNetCrossRefGoogle Scholar
  32. 32.
    Iaccarino G., Verzicco R.: Immersed boundary technique for turbulent flow simulations. Appl. Mech. Rev. 56, 331–347 (2003)CrossRefGoogle Scholar
  33. 33.
    Tseng Y., Ferziger J.H.: A ghost-cell immersed boundary method for flow in complex geometry. J. Comput. Phys. 192, 593–623 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  34. 34.
    Gao T., Tseng Y., Lu X.: An improved hybrid cartesian/immersed boundary method for fluid-solid flows. Int. J. Numer. Meth. Fluids 55, 1189–1211 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  35. 35.
    Dadone A., Grossman B.: Ghost-cell method for inviscid two-dimensional flows on cartesian grids. AIAA J. 42(12), 2499–2507 (2004)CrossRefGoogle Scholar
  36. 36.
    Chaudhuri A., Hadjadj A., Chinnayya A., Palerm S.: Numerical study of compressible mixing layers using high-order WENO schemes. J. Sci. Comput. 47(2), 170–197 (2011). doi: 10.1007/s10915-010-9429-3 MathSciNetzbMATHCrossRefGoogle Scholar
  37. 37.
    Whitham G.B.: A new approach to problems of shock dynamics. Part I: two-dimensional problems. J. Fluid Mech. 2, 145–171 (1957)MathSciNetzbMATHCrossRefGoogle Scholar
  38. 38.
    Schardin H.: High frequency cinematography in the shock tube. J. Photo Sci. 5, 19–26 (1957)Google Scholar
  39. 39.
    Bryson A.E., Gross R.W.F.: Diffraction of strong shocks by cones, cylinders, and spheres. J. Fluid Mech. 10, 1–16 (1961)MathSciNetzbMATHCrossRefGoogle Scholar
  40. 40.
    Skews B.W.: The shape of diffraction shock wave. J. Fluid Mech. 29, 297–304 (1967)CrossRefGoogle Scholar
  41. 41.
    Yang J.Y., Liu Y., Lomax H.: Computation of shock wave reflection by circular cylinders. AIAA J. 25(5), 683–689 (1987)CrossRefGoogle Scholar
  42. 42.
    Kaca, J.: An interferometric investigation of the diffraction of a planar shock wave over a semicircular cylinder (UTIAS Technical Note), vol. 269 (1988)Google Scholar
  43. 43.
    Hillier R.: Computation of shock wave diffraction at a ninety degree convex edge. Shock waves 1, 89–98 (1991)zbMATHCrossRefGoogle Scholar
  44. 44.
    Sivier S., Loth E., Baum J., Lohner R.: Vorticity produced by shoch wave diffraction. Shock waves 2, 31–41 (1992)CrossRefGoogle Scholar
  45. 45.
    Reichenbach H.: In the footsteps of Ernst Mach—a historical review of shock wave research at the Ernst-MAch-Institut. Shock waves 2, 65–79 (1992)CrossRefGoogle Scholar
  46. 46.
    Zoltak J., Drikakis D.: Hybrid upwind methods fir the simulation of unsteady shock-wave diffraction over a cylinder. Comput. Methods Appl. Mech. Eng. 162, 165–185 (1998)zbMATHCrossRefGoogle Scholar
  47. 47.
    Chang S., Chang K.: On the shock–vortex interaction in Schardin’s problem. Shock Waves 10, 333–343 (2000)zbMATHCrossRefGoogle Scholar
  48. 48.
    Rikanati, A., Sadot, O., Ben-Dor, G., Shvarts, D., Kuribayashi, T., Takayama, K.: Shock-Wave Mach-reflection slip-stream instability. Phys Rev Lett. 96, 174503 (2006)Google Scholar
  49. 49.
    Ripley R.C., Lien F.S., Yovanovich M.M.: Numerical simulation of shock diffraction on unstructured meshes. Comput. Fluids 35, 1420–1431 (2006)zbMATHCrossRefGoogle Scholar
  50. 50.
    Tseng T.-I., Yang R.-J.: Numerical simulation of vorticity production in shock diffraction. AIAA J. 44(5), 1040–1047 (2006)CrossRefGoogle Scholar
  51. 51.
    Ben-Dor G.: Shock Wave Reflection Phenomena, 2nd edn. Springer, Berlin (2007)zbMATHGoogle Scholar
  52. 52.
    Suzuki, K., Himeki, H., Watanuki, T., Abe, T.: Experimental studies on characteristics of shock wave propagation through cylinder array, The Institute of Space and Astronautical Science Report No. 676, March (2000)Google Scholar
  53. 53.
    Anderson J.D.: Modern Compressible Flow with Historical Perspective. McGraw-Hill, New York (1982)Google Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • A. Chaudhuri
    • 1
    Email author
  • A. Hadjadj
    • 1
  • O. Sadot
    • 2
  • G. Ben-Dor
    • 2
  1. 1.CORIA-INSA, University of RouenSt Etienne du RouvrayFrance
  2. 2.Department of Mechanical EngineeringBen-Gurion University of the NegevBeer ShevaIsrael

Personalised recommendations