Skip to main content
Log in

Shock wave structure for a fully ionized plasma

  • Original Article
  • Published:
Shock Waves Aims and scope Submit manuscript

Abstract

We study planar shock wave structure in a two-temperature model of a fully ionized plasma that includes electron heat conduction and energy exchange between electrons and ions. For steady flow in a reference frame moving with the shock, the model reduces to an autonomous system of ordinary differential equations which can be numerically integrated. A phase space analysis of the differential equations provides an additional insight into the structure of the solutions. For example, below a threshold Mach number, the model produces continuous solutions, while above another threshold Mach number, the solutions contain embedded hydrodynamic shocks. Between the threshold values, the appearance of embedded shocks depends on the electron diffusivity and the electron–ion coupling term. We also find that the ion temperature may achieve a maximum value between the upstream and downstream states and away from the embedded shock. We summarize the methodology for solving for two-temperature shocks and show results for several values of shock strength and plasma parameters in order to quantify the shock structure and explore the range of possible solutions. Such solutions may be used to verify hydrodynamic codes that use similar plasma physics models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zel’dovich Y.B.: Shock waves of large amplitude in air. Sov. Phys. JETP 5, 919–927 (1957)

    MATH  Google Scholar 

  2. Shafranov V.D.: The structure of shock waves in a plasma. Sov. Phys. JETP 5, 1183–1188 (1957)

    MathSciNet  MATH  Google Scholar 

  3. Imshennik V.S.: Shock wave structure in a hot, dense plasma. Sov. J. Plasma Phys. 1, 108–116 (1975)

    Google Scholar 

  4. Imshennik V.S.: Shock wave structure in a dense high-temperature plasma. Sov. Phys. JETP 15, 167–174 (1962)

    Google Scholar 

  5. Jaffrin M.Y., Probstein R.F.: Structure of a plasma shock wave. Phys. Fluids 7, 1658–1674 (1964)

    Article  MathSciNet  Google Scholar 

  6. Tidman D.A.: Structure of shock wave in fully ionized hydrogen. Phys. Rev 111, 1439–1446 (1958)

    Article  MathSciNet  Google Scholar 

  7. Bouquet S., Teyssier R., Chieze J.P.: Analytical study and structure of a stationary radiative shock. Astrophys. J. Suppl. Ser. 127, 245–252 (2000)

    Article  Google Scholar 

  8. Drake R.P.: Theory of radiative shocks in optically thick media. Phys. Plasmas 14, 043301 (2007)

    Article  Google Scholar 

  9. Lowrie R.B., Rauenzahn R.M.: Radiative shock solutions in the equilibrium-diffusion limit. Shock Waves 16, 445–453 (2007)

    Article  Google Scholar 

  10. Lowrie R.B., Edwards J.D.: Radiative shock solutions with grey nonequilibrium diffusion. Shock Waves 18, 129–143 (2008)

    Article  Google Scholar 

  11. Jukes J.D.: The structure of a shock wave in a fully ionized gas. J. Fluid Mech. 3, 275–285 (1957)

    Article  MathSciNet  Google Scholar 

  12. Vidal F., Matte J.P., Casanova M., Larroche O.: Ion kinetic simulations of the formation and propagation of a planar collisional shock wave in a plasma. Phys. Fluids B 5, 3182–3190 (1993)

    Article  Google Scholar 

  13. Velikovich A.L., Whitney K.G., Thornhill J.W.: A role for electron viscosity in plasma shock heating. Phys. Plasmas 8, 4524–4533 (2001)

    Article  Google Scholar 

  14. Lindl J.D.: Inertial Confinement Fusion. Springer, New York (1998)

    Google Scholar 

  15. Atzeni S., Meyer-Ter-Vehn J.: The Physics of Inertial Fusion. Oxford University Press, Oxford (2004)

    Book  Google Scholar 

  16. Drake R.P.: High Energy Density Physics. Springer, Berlin (2006)

    Google Scholar 

  17. Zel’dovich Y.B., Raizer Y.P.: Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena. Academic Press, New York (1967)

    Google Scholar 

  18. Mihalas D., Mihalas B.W.: Foundations of Radiation Hydrodynamics. Oxford University Press, New York (1984)

    MATH  Google Scholar 

  19. McClarren R.G., Wohlbier J.G.: Solutions for ion–electron–radiation coupling with radiation and electron diffusion. JQSRT 112, 119–130 (2011)

    Article  Google Scholar 

  20. Gittings M., Weaver R., Clover M., Betlach T., Byrne N., Coker R., Dendy E., Hueckstaedt R., New K., Oakes W., Ranta D., Stefan R.: The RAGE Radiation-Hydrodynamic Code. Comput. Sci. Discov. 1, 015005 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. O. Masser.

Additional information

Communicated by D. Zeitoun.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Masser, T.O., Wohlbier, J.G. & Lowrie, R.B. Shock wave structure for a fully ionized plasma. Shock Waves 21, 367–381 (2011). https://doi.org/10.1007/s00193-011-0313-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00193-011-0313-3

Keywords

Navigation