Skip to main content
Log in

Numerical modelling of the entrainment of particles in inviscid supersonic flow

  • Original Article
  • Published:
Shock Waves Aims and scope Submit manuscript

Abstract

The interaction between particles situated in close proximity and moving at supersonic speeds is investigated computationally. The simplest case of the motion of a single particle travelling behind a lead particle is used to elucidate the role of aerodynamic forces in the motion of a group of particles. The effect of the following parameters on the drag and lift forces acting on each of two particles of equal diameter in proximity is investigated: the free-stream Mach number, and the axial and lateral displacements of the trailing particle. The two-dimensional flow field is numerically simulated using an unsteady Euler CFD code to find the steady-state drag and lift coefficients for both particles. Three static zones of aerodynamic influence in the wake of the lead particle are identified, which are denoted as the entrainment, lateral attraction, and ejection zones. A non-dimensional representation of the zones of influence is given. It is shown that the dynamic entrainment of particles can occur even when the path of the trailing particle originates outside the entrainment and lateral attraction zones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Artemieva N., Pierazzo E.: The Canyon Diablo impact event: projectile motion through the atmosphere. Meteorit. Planet. Sci. 44, 25–42 (2009)

    Article  Google Scholar 

  2. Artemieva N.A., Shuvalov V.V.: Motion of a fragmented meteoroid through the planetary atmosphere. J. Geophys. Res. 106, 3297–3310 (2001)

    Article  Google Scholar 

  3. Billig F.S.: Shock-wave shapes around spherical-and cylindrical-nosed bodies. J. Spacecr. Rockets 4, 822–823 (1967)

    Article  Google Scholar 

  4. Bland P.A., Artemieva N.A.: The rate of small impacts on Earth. Meteorit. Planet. Sci. 41, 607–631 (2006)

    Article  Google Scholar 

  5. Boiko V.M., Klinkov K.V., Poplavskii S.V.: Collective bow shock ahead of a transverse system of spheres in a supersonic flow behind a moving shock wave. Fluid Dyn. 39(2), 330–338 (2004)

    Article  Google Scholar 

  6. Compton D., Giblin R., Radmore P.: Measurements on an ensemble of spheres in the transonic velocity regime. IEE Proc. Sci. Meas. Technol. 145(1), 8–12 (1998)

    Article  Google Scholar 

  7. Compton D.J., Radmore P.M., Giblin R.A.: A stochastic model of the dynamics of an ensemble of spheres. Proc. Math. Phys. Eng. Sci. 453(1963), 1717–1731 (1997)

    Article  MathSciNet  Google Scholar 

  8. Delaunay B.: Sur la sphère vide. Izvestia Akademii Nauk SSSR, Otdelenie Matematicheskikh i Estestvennykh Nauk 7, 793–800 (1934)

    MATH  Google Scholar 

  9. Frost, D., Zhang, F.: The nature of heterogeneous blast explosives. In: Julius Meszaros Memorial Lecture. Proceedings of the 19th International Symposium on Military Aspects of Blast and Shock, 1–6 October, Calgary, Canada (2006)

  10. Frost D.L., Ornthanalai C., Zarei Z., Tanguay V., Zhang F.: Particle momentum effects from the detonation of heterogeneous explosives. J. Appl. Phys. 101(11), 113529 (2007)

    Article  Google Scholar 

  11. Hoerner, S.: Fluid dynamic drag: practical information on aerodynamic drag and hydrodynamic resistance Hoerner Fluid Dyn. (1965)

  12. Laurence S., Deiterding R., Hornung G.: Proximal bodies in hypersonic flow. J. Fluid Mech. 590, 209–237 (2007)

    Article  MathSciNet  Google Scholar 

  13. Löhner R.: The efficient simulation of strongly unsteady flows by the finite element method. AIAA Paper 87-0555, AIAA (1987)

  14. Milne A.M., Parrish C., Worland I.: Dynamic fragmentation of blast mitigants. Shock Waves 20, 41–51 (2010)

    Article  Google Scholar 

  15. Nourgaliev, R.R., Dinh, T.N., Theofanous, T.G., Koning, J.M., Greenman, R.M., Nakafuji, G.T.: Direct numerical simulation of disperse multiphase high-speed flows. In: AIAA Paper 2004-1284, 42nd AIAA Aerospace Sciences Meeting and Exhibit, January 5–8, 2004, Reno, NV, USA., pp. 10365–10375. AIAA (2004)

  16. RBT Consultants, Toronto: SolverII, Software Package, Ver. 2.30.2385 (2004)

  17. Ripley, R., Leadbetter, J.: Acceleration of solid particles in explosive dispersal. In: 27th International Symposium on Shock Waves Book of Proceedings, p. 167. Ioffe Institute of the Russian Academy of Sciences (2009)

  18. Ritzel D, Ripley R, Murray S, Anderson J.: Near-field blast phenomenology of thermobaric explosions. In: Hannemann, K, Seiler, F. (eds) 26th International Symposium on Shock Waves, vol. 1, pp. 305–310. Springer, Berlin (2007)

    Google Scholar 

  19. Schultz P., Gault D.: Clustered impacts—experiments and implications. J. Geophys. Res. 90, 3701–3732 (1985)

    Article  Google Scholar 

  20. Sparks R., Bursik M., Carey S., Gilbert J., Glaze L., Sigurdsson H., Woods A.: Volcanic Plumes. Wiley, London (1997)

    Google Scholar 

  21. Toro E.: Riemann Solvers and Numerical Methods for Fluid Dynamics, 2nd edn. Springer, Berlin (1999)

    Book  Google Scholar 

  22. Woods A.W.: The fluid dynamics and thermodynamics of eruption columns. Bull. Volcanol. 50, 169–193 (1988)

    Article  Google Scholar 

  23. Xu, T., Ji, H., Lien, F., Zhang, F.: Drag-force in supersonic dense gas-solid flow. In: 27th International Symposium on Shockwaves Book of Proceedings, p. 166. Ioffe Institute of the Russian Academy of Sciences (2009)

  24. Zarei, Z., Frost, D., Donahue, L., Whitehouse, D.: Simplified modeling of non-ideal blast waves from metallized heterogeneous explosives. In: Paper 197, Proceedings of the 20th International Colloquium on the Dynamics of Explosions and Reactive Systems, Montreal, Quebec (2005)

  25. Zhang F., Frost D., Thibault P., Murray S.: Explosive dispersal of solid particles. Shock Waves 10, 431–443 (2001)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. Zarei.

Additional information

Communicated by B. W. Skews.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zarei, Z., Frost, D.L. & Timofeev, E.V. Numerical modelling of the entrainment of particles in inviscid supersonic flow. Shock Waves 21, 341–355 (2011). https://doi.org/10.1007/s00193-011-0311-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00193-011-0311-5

Keywords

Navigation