Skip to main content
Log in

Modelling of detonation cellular structure in aluminium suspensions

  • Original Article
  • Published:
Shock Waves Aims and scope Submit manuscript

Abstract

Heterogeneous detonations involving aluminium suspensions have been studied for many years for industrial safety policies, and for military and propulsion applications. Owing to their weak detonability and to the lack of available experimental results on the detonation cellular structure, numerical simulations provide a convenient way to improve the knowledge of such detonations. One major difficulty arising in numerical study of heterogeneous detonations involving suspensions of aluminium particles in oxidizing atmospheres is the modelling of aluminium combustion. Our previous two-step model provided results on the effect on the detonation cellular structure of particle diameter and characteristic chemical lengths. In this study, a hybrid model is incorporated in the numerical code EFAE, combining both kinetic and diffusion regimes in parallel. This more realistic model provides good agreement with the previous two-step model and confirms the correlations found between the detonation cell width, and particle diameter and characteristic lengths. Moreover, the linear dependence found between the detonation cell width and the induction length remains valid with the hybrid model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhang F., Grönig H., Van de Ven A.: DDT and detonation waves in dust–air mixtures. Shock Waves 11, 53–71 (2001)

    Article  Google Scholar 

  2. Ingignoli, W., Veyssiere, B., Khasainov, B.A.: Shock initiation of detonations in aluminium–oxygen mixtures. In: Pulsed and Continuous Detonations, pp. 218–224. Torus Press, Moscow, ISBN 5-94588-040-X (2006)

  3. Briand, A., Veyssiere, B., Khasainov, B.A.: Detonability of aluminium suspensions. In: Proceedings of the 7th ISHPMIE, vol. 2, pp. 213–222. St. Petersburg, Russia (2008)

  4. Veyssiere B., Khasainov B.A., Briand A.: Investigation of detonation initiation in aluminium suspensions. Shock Waves 18(4), 307–315 (2008)

    Article  MATH  Google Scholar 

  5. Benkiewicz K., Hayashi A.K.: Two-dimensional numerical simulations of multi-headed detonations in oxygen–aluminium mixtures using adaptative mesh refinement. Shock Waves 12(5), 385–402 (2003)

    Article  MATH  Google Scholar 

  6. Fedorov A.V., Khmel T.A.: Numerical simulation of formation of cellular heterogeneous detonation of aluminium particles in oxygen. Comb. Expl. Shock Waves 41(4), 435–448 (2005)

    Article  Google Scholar 

  7. Khmel T.A., Fedorov A.V.: Dependence of the heterogeneous detonation cell size on the flow scales. In: Roy, G., Frolov, S.M. (eds) Pulse and Continuous Detonation Propulsion, pp. 107–122. Torus Press, Moscow (2006)

    Google Scholar 

  8. Zhang, F., Gerrard, K.B., Ripley, R.C., Tanguay, V.: Unconfined aluminium particles–air detonation. In: Proceedings of the 26th ISSW, pp. 15–20. Goettingen, Germany (2007)

  9. Khasainov B.A., Veyssiere B.: Analysis of the steady double-front detonation structure for a detonable gas laden with aluminium particles. Arch. Combust. 7(3–4), 333–352 (1987)

    Google Scholar 

  10. Zhang F., Murray S.B., Gerrard K.B.: Aluminium particles–air detonation at elevated pressure. Shock Waves 15, 313–324 (2006)

    Article  Google Scholar 

  11. Shchelkin, K.I., Troshin, Ya.K.: Gas-Dynamics of Combustion [in Russian]. Izd. Akad. Nauk. SSSR, Moscow (1963)

  12. Frank-Kamenetzkii D.A.: Diffusion and Heat Transfer in Chemical Kinetics. Plenum Press, New York (1969)

    Google Scholar 

  13. Nigmatulin R.I.: Prikl. Matemat. Mekh. 34, 1097–1112 (1970)

    Google Scholar 

  14. Veyssiere B., Khasainov B.A.: A model for steady, plane, double- front detonations (DFD) in gaseous explosive mixtures with aluminium particles in suspension. Combust. Flame 85, 241–253 (1991)

    Article  Google Scholar 

  15. Price E.W.: Combustion of metalized propellants, fundamentals of solid propellant combustion. In: Kuo, K.K., Summerfield, M.M. (eds) Progress in Astronautics and Aeronautics, vol. 90, pp. 479–513. AIAA, New York (1984)

    Google Scholar 

  16. Veyssiere B., Kato Y., Brochet C., Bouriannes R., Manson N.: Pyrometric studies of Al combustion in the wake of two-phase detonations. Arch. Combust. 3(3), 151–160 (1983)

    Google Scholar 

  17. Oran E.S., Boris J.P.: Numerical Simulation of Reactive Flow, 2nd edn. Cambridge University Press, Cambridge (2001)

    MATH  Google Scholar 

  18. Hirsch C.: Numerical Computation of Internal and External Flows. Vol. 1: Fundamentals of Numerical Discretization. Wiley, New York (1988)

    Google Scholar 

  19. Veyssiere B., Bozier O., Khasainov B.A.: Effect of a suspension of magnesium particles on the detonation characteristics of methane-oxygene-nitrogen mixtures at elevated initial pressure. Shock waves 12, 27–233 (2002)

    Article  Google Scholar 

  20. Victorov S.B., Gubin S.A.: A double-front structure of detonation wave as the result of phase transition. Shock Waves 15(2), 113–128 (2006)

    Article  MATH  Google Scholar 

  21. Ingignoli, W.: Etude de la formation et de la propagation des detonations dans des suspensions de particules d’aluminium en atmosphere oxydante ou reactive. These de Docteur-Ingenieur, ENSMA, University of Poitiers, France (1999)

  22. Merzhanov A.G., Grigor’jev Yu.M., Gal’Chenko Yu.A.: Aluminium ignition. Combust. Flame 29, 1–14 (1977)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Veyssiere.

Additional information

Communicated by L. Bauwens.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Briand, A., Veyssiere, B. & Khasainov, B.A. Modelling of detonation cellular structure in aluminium suspensions. Shock Waves 20, 521–529 (2010). https://doi.org/10.1007/s00193-010-0288-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00193-010-0288-5

Keywords

Navigation