Skip to main content

Advertisement

Log in

Two-cell detonation: losses effects on cellular structure and propagation in rich H2–NO2/N2O4–Ar mixtures

  • Original Article
  • Published:
Shock Waves Aims and scope Submit manuscript

Abstract

Detonation experiments in H2–NO2/N2O4–Ar mixtures (Equivalence ratio 1.2 and initial pressure lower than 0.1 MPa) confined in a tube of internal diameter 52 mm reveal two propagation regimes depending on initial pressure: (1) a quasi-CJ regime is observed along with a double cellular structure at high pressures; (2) at lower pressures, a low velocity detonation regime is observed with a single structure. Transition between this two regimes happens when the spinning detonation of the larger cell vanishes. Each detonation regime is characterized by velocity and pressure measurements and cellular structure records. Coherence between all experimental data for each experiment leads in assumption that losses are responsible for the transition between one regime to another. In a second part, we study such behaviour for a two-step mixture through numerical simulations using a global two-step chemical kinetics and a simple losses model. Numerical simulations qualitatively agree with experiments. Both detonation regimes with their own cellular structures are reproduced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

c v :

Heat capacity at constant volume

d :

Channel width or tube diameter

D :

Detonation velocity

E :

Total energy

Ea i :

Activation energy of reaction i

n i :

Order of reaction i

p :

Pressure

p 0,t :

Initial pressure where transition is observed

Q i :

Heat of reaction of step i

R :

Perfect gas constant

T :

Temperature

\({\overrightarrow{V}}\) :

Particle velocity

x i :

Mole number of species i

X i :

Molar fraction of species i

Y i :

Mass fraction of species i

Z i :

Pre-exponential factor of reaction i

W m :

Molecular weight

\({\phi}\) :

Equivalence ratio

γ :

Polytropic coefficient c p /c v

λ:

Detonation cell size

ρ :

Density

σ :

Thermicity

References

  1. Presles H.N., Desbordes D., Guirard M., Guerraud G.: Gaseous nitromethane and nitromethane–oxygen mixtures: a new detonation structure. Shock Waves 6, 111–114 (1996)

    Article  Google Scholar 

  2. Joubert F., Desbordes D., Presles H.N.: Detonation cellular structure in NO2/N2O4—fuel gaseous mixtures. Combust. Flame 152, 482–495 (2008)

    Article  Google Scholar 

  3. Lamoureux N., Matignon C., Sturtzer M.O., Desbordes D., Presles H.N.: Interprétation de la double structure observée dans l’onde de détonation du nitrométhane gazeux. C. R. Acad. Sci. Paris 329(IIb), 687–692 (2001)

    MATH  Google Scholar 

  4. Djebaïli-Chaumeix, N., Abid, S., Paillard, C.E.: Shock tube study of the nitromethane decomposition and oxidation. 21st Symposium on Shock Waves, vol. 1, pp. 121–126 (1997)

  5. Konnov, A.A.: Development and validation of a detailed reaction mechanism for the combustion of small hydrocarbons. 28th Symposium (International) on Combustion, Edinburgh (2000)

  6. Desbordes D., Presles H.-N., Joubert F., Gbagdo Douala C.: Etude de la détonation de mélanges pauvres H2–NO2/N2O4. C. R. Mecanique 332, 993–999 (2004)

    Article  Google Scholar 

  7. Luche J., Desbordes D., Presles H.N.: Détonation de mélanges H2–NO2/N2O4–Ar. C. R. Mecanique 334, 323–327 (2006)

    MATH  Google Scholar 

  8. Desbordes D., Lannoy A.: Effect of a negative step of fuel concentration on critical diameter of diffraction of a detonation. Prog. Astronaut. Aeronaut. 133, 170–186 (1991)

    Google Scholar 

  9. Joubert, F.: Etude de la détonation de mélanges réactifs constitués d’un combustible (H2, CH4, C2H6, C2H4) et d’un oxyde d’azote (N2O, NO2/N2O4). PhD thesis, Université de Poitiers (2001)

  10. Luche, J., Desbordes, D., Presles, H.-N.: Study of overdriven detonation of H2–NO2/N2O4 mixtures. In: Proceedings of 20th ICDERS Montreal (2005)

  11. Manzhalei V.I.: Fine structure of the leading front of a gas detonation. Combust. Explos. Shock Waves (USSR) 13(3), 402–404 (1977)

    Article  Google Scholar 

  12. Virot F., Khasainov B., Desbordes D., Presles H.N.: Numerical simulation of the influence of tube diameter on detonation regimes and structures in 2-step/2-cell mixtures. Combust. Explos. Shock Waves 45(4), 435–441 (2009)

    Article  Google Scholar 

  13. Korobeinikov V.P, Levin V.A.: Propagation of blast waves in a combustible gas. Astronaut. Acta 17, 437–520 (1972)

    Google Scholar 

  14. Oran E.S., Young T., Boris J.P., Cohen A.: Weak and strong ignition. I. Numerical simulations of shock tube experiments. Combust. Flame 48, 135–161 (1982)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Virot.

Additional information

Communicated by L. Bauwens.

This paper is based on work that was presented at the 22nd International Colloquium on the Dynamics of Explosions and Reactive Systems, Minsk, Belarus, July 27–31, 2009.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Virot, F., Khasainov, B., Desbordes, D. et al. Two-cell detonation: losses effects on cellular structure and propagation in rich H2–NO2/N2O4–Ar mixtures. Shock Waves 20, 457–465 (2010). https://doi.org/10.1007/s00193-010-0283-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00193-010-0283-x

Keywords

Navigation