Skip to main content
Log in

Stimulated Detached Eddy Simulation of three-dimensional shock/boundary layer interaction

  • Original Article
  • Published:
Shock Waves Aims and scope Submit manuscript

Abstract

The shock/boundary layer interaction experiment performed at IUSTI (Institut Universitaire des Systèmes Thermiques Industriels, Université de Provence) has been computed using the Stimulated Detached Eddy Simulation approach. This computation accounts for the whole wind tunnel span. It suggests that corner separations induced by the presence of lateral walls reduce the effective section of the wind tunnel and strengthen the interaction, making periodic computations irrelevant for strongly separated situations (shock deviation of 9.5 degrees). Furthermore, this computation evidences that the strongest wall pressure fluctuations are found in corner flows. The latter are subjected to low frequency movements which contribute to 30% of the total fluctuations. Nevertheless, it was not possible to connect statistically these movements to the ones of the main separation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Knight D.D., Yan H., Panaras A.G., Zheltovodov A.A.: Advances in CFD prediction of shock wave turbulent boundary layer interactions. Prog. Aerosp. Sci. 39, 121–184 (2003)

    Article  Google Scholar 

  2. Adams N.A.: Direct simulation of the turbulent boundary layer along a compression ramp at M = 3 and Re θ = 1685. J. Fluid Mech. 420, 47–83 (2000)

    Article  Google Scholar 

  3. Ringuette M., Wu M., Martin M.P.: Coherent structures in DNS of turbulent boundary layers at Mach 3. J. Fluid Mech. 594, 59–69 (2003)

    Article  Google Scholar 

  4. Edwards J.R.: Numerical simulations of shock/boundary layer interactions using time-dependent modeling techniques: a survey of recent results. Prog. Aerosp. Sci. 44, 447–465 (2008)

    Article  Google Scholar 

  5. Dupont P., Haddad C., Ardissone J.P., Debiève J.F.: Space and time organisation of a shock wave/turbulent boundary layer interaction. Aerosp. Sci. Technol. 9, 561–572 (2005)

    Article  Google Scholar 

  6. Dupont P., Haddad C., Debiève J.F.: Space and time organisation in a shock-induced separated boundary layer. J. Fluid Mech. 559, 255–277 (2006)

    Article  Google Scholar 

  7. Garnier E., Sagaut P., Deville M.: Large-Eddy Simulation of shock boundary layer interaction. AIAA J. 40(10), 1935–1944 (2002)

    Article  Google Scholar 

  8. Teramoto S.: Large Eddy Simulation of transitional boundary layer with impinging shock wave. AIAA J. 43(11), 2354–2363 (2005)

    Article  Google Scholar 

  9. Touber, E., Sandham, N.D.: Oblique shock impinging on a turbulent boundary layer: low frequency mechanisms. AIAA paper 2008-4170 (2008)

  10. De Martel, E., Garnier, E., Sagaut, P.: LES of impinging shock wave/turbulent boundary layer interaction at Ma=2.3. In: IUTAM Symposium on “Unsteady Separated Flows and Their Control”, Corfu, Greece (2007)

  11. Sagaut P., Deck S., Terracol M.: Multiscale and multiresolution approaches in turbulence. Imperial College Press, London (2006)

    Book  Google Scholar 

  12. Spalart P.R., Deck S., Shur M.L., Squires K.D., Strelets M., Travin A.: A new version of detached-eddy simulation, resistant to ambiguous grid densities. Theor. Comput. Fluid Dyn. 20, 181–195 (2006)

    Article  Google Scholar 

  13. Pamies M., Weiss P.-E., Garnier E., Deck S., Sagaut P.: Generation of synthetic turbulent inflow data for large-eddy simulation of spatially-evolving wall-bounded flows. Phys. Fluids 21, 045103 (2009)

    Article  Google Scholar 

  14. Jarrin, N., Benhamadouche, S. Laurence, Prosser, D.: A synthetic eddy method for generating inflow conditions for Large Eddy Simulations. Int. J. Heat Fluid Flow 27(4), 421–430 (2006)

    Article  Google Scholar 

  15. Deck, S., Weiss, P.E., Pamies, M., Garnier, E.: On the use of Stimulated Detached Eddy Simulation for spatially developing boundary layers. In: Peng, S.-H., Haase, W. (eds.) Second Symposium on Hybrid RANS-LES Methods. Advances in Hybrid RANSLES Modelling. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, vol. 97. Springer, New York (2008)

  16. Péchier M., Guillen P., Gayzac R.: Magnus effect over finned projectiles. J. Spacecr. Rockets 38, 542–549 (2001)

    Article  Google Scholar 

  17. Ducros F., Ferrand V., Nicoud F., Weber C., Darracq D., Gacherieu C., Poinsot T.: Large-Eddy Simulation of shock/ turbulence interaction. J. Comput. Phys. 152, 517–549 (1999)

    Article  Google Scholar 

  18. Spalart, P.R., Allmaras, S.R.: A one equation turbulence model for aerodynamics flows. AIAA Paper 92-0439, January 1992

  19. Piponniau S., Dussauge J.P., Debiève J.: A simple model for low frequency unsteadiness in shock induced separation. J. Fluid Mech. 629, 87–108 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric Garnier.

Additional information

Communicated by J.-P. Dussauge.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Garnier, E. Stimulated Detached Eddy Simulation of three-dimensional shock/boundary layer interaction. Shock Waves 19, 479–486 (2009). https://doi.org/10.1007/s00193-009-0233-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00193-009-0233-7

Keywords

PACS

Navigation