Skip to main content
Log in

Comparison of three large-eddy simulations of shock-induced turbulent separation bubbles

  • Original Article
  • Published:
Shock Waves Aims and scope Submit manuscript

Abstract

Three different large-eddy simulation investigations of the interaction between an impinging oblique shock and a supersonic turbulent boundary layer are presented. All simulations made use of the same inflow technique, specifically aimed at avoiding possible low-frequency interferences with the shock/boundary-layer interaction system. All simulations were run on relatively wide computational domains and integrated over times greater than twenty five times the period of the most commonly reported low-frequency shock-oscillation, making comparisons at both time-averaged and low-frequency-dynamic levels possible. The results confirm previous experimental results which suggested a simple linear relation between the interaction length and the oblique-shock strength if scaled using the boundary-layer thickness and wall-shear stress. All the tested cases show evidences of significant low-frequency shock motions. At the wall, energetic low-frequency pressure fluctuations are observed, mainly in the initial part of interaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Beresh, S.J., Clemens, N.T., Dolling, D.S.: Relationship between upstream turbulent boundary-layer velocity fluctuations and separation shock unsteadiness. AIAA J. 40(12) (2002)

  2. Carpenter, M.H., Nordstrom, J., Gottlieb, D.: A Stable and Conservative Interface Treatment of Arbitrary Spatial Accuracy. NASA/CR-1998-206921 (1998)

  3. Dolling, D.S.: Fifty years of shock-wave/boundary-layer interaction research: what next? AIAA J. 39(8) (2001)

  4. Ducros F., Ferrand V., Nicoud F., Weber C., Darracq D., Gacherieu C., Poinsot T.: Large-eddy simulation of the shock/ turbulence interaction. J. Comput. Phys. 152, 517–549 (1999)

    Article  Google Scholar 

  5. Dupont P., Haddad C., Debiève J.F.: Space and time organization in a shock-induced separated boundary layer. J. Fluid Mech. 559, 255–277 (2006)

    Article  Google Scholar 

  6. Dupont, P., Piponniau, S., Sidorenko, A., Debiève, J.F.: Investigation by particle image velocimetry measurements of oblique shock reflection with separation. AIAA J. 46(6) (2008)

  7. Dussauge J.-P., Dupont P., Debiève J.-F.: Unsteadiness in shock wave boundary layer interaction with separation. Aerospace Sci. Technol. 10, 85–91 (2006)

    Article  Google Scholar 

  8. Dussauge J.-P., Piponniau S.: Shock/boundary-layer interactions: possible sources of unsteadiness. J. Fluids Struct. 24, 1166–1175 (2008)

    Article  Google Scholar 

  9. Ganapathisubramani B., Clemens N.T., Dolling D.S.: Effects of upstream boundary layer on the unsteadiness of shock-induced separation. J. Fluid Mech. 585, 369–394 (2007)

    Article  Google Scholar 

  10. Garnier, E., Sagaut, P., Deville, M.: Large eddy simulation of shock/boundary-layer interaction. AIAA J. 40(10) (2002)

  11. Hou, Y.X., Clemens, N.T., Dolling, D.S.: Wide-field PIV study of shock-induced turbulent boundary layer separation. In: 41st aerospace sciences meeting and exhibit, AIAA paper 2003–0441 (2003)

  12. Hudy, L.M., Naguib, A.M., Humphreys, W.M. Jr.: Wall-pressure measurements beneath a separating/reattaching flow region. Phys. Fluids 15(3) (2003)

  13. Inagaki M., Kondoh T., Nagano Y.: A mixed-time-scale SGS model with fixed model-parameters for practical LES. J. Fluids Eng. 127, 1–13 (2005)

    Article  Google Scholar 

  14. Katzer E.: On the lengthscales of laminar shock/boundary-layer interaction. J. Fluid Mech. 206, 477–496 (1989)

    Article  Google Scholar 

  15. Klein M., Sadiki A., Janicka J.: A digital filter based generation of inflow data for spatially developing direct numerical or large eddy simulations. J. Comput. Phys. 186, 652–665 (2003)

    Article  Google Scholar 

  16. Loginov M.S., Adams N.A., Zheltovodov A.A.: Large-eddy simulation of shock-wave/turbulent-boundary-layer interaction. J. Fluid Mech. 565, 135–169 (2006)

    Article  Google Scholar 

  17. Moin P., Squires K., Cabot W., Lee S.: A dynamic subgrid-scale model for compressible turbulence and scalar transport. Phys. Fluids 3(11), 2746–2757 (1991)

    Article  Google Scholar 

  18. Pirozzoli, S., Grasso, F.: Direct numerical simulation of impinging shock wave/turbulent boundary layer interaction at M = 2.25. Phys. Fluids 18(6) (2006)

  19. Robinet J.-Ch.: Bifurcations in shock-wave/laminar-boundary- layer interaction: global instability approach. J. Fluid Mech. 579, 85–112 (2007)

    Article  MathSciNet  Google Scholar 

  20. Sandham N.D., Li Q., Yee H.C.: Entropy splitting for high-order numercial simulation of compressible turbulence. J. Comput. Phys. 178, 307–322 (2002)

    Article  Google Scholar 

  21. Sandhu, H.S., Sandham, N.D.: Boundary Conditions for Spatially Growing Compressible Shear Layers (1994). Technical Report QMW-EP-1100, Queen Mary University of London (1994)

  22. Spalart, P.R.: Direct simulation of a turbulent boundary layer up to Reθ = 1410. J. Fluid Mech. 187 (1988)

  23. Stewartson, K., Williams, P.G.: Self-induced Separation. In: Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, vol. 312. pp. 281–206 (1969)

  24. Teramoto, S.: Large-eddy simulation of transitional boundary layer with impinging shock wave. AIAA J. 43(11) (2005)

  25. Thompson K.W.: Time dependent boundary conditions for hyperbolic systems. J. Comput. Phys. 68(1), 1–24 (1987)

    Article  MathSciNet  Google Scholar 

  26. Touber, E., Sandham, N.D.: Oblique Shock Impinging on a Turbulent Boundary Layer: Low-Frequency Mechanisms. In: 38th Fluid Dynamics Conference and Exhibit, AIAA paper 2008–4170 (2008)

  27. Touber E., Sandham N.D.: Large-eddy simulation of low-frequency unsteadiness in a turbulent shock-induced separation bubble . Theor. Comput. Fluid Dyn. 23, 79–107 (2009)

    Article  Google Scholar 

  28. Yee H.C., Sandham N.D., Djomehri M.J.: Low-Dissipative high-order shock-capturing methods using characteristic-based filters. J. Comput. Phys. 150, 199–238 (1999)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emile Touber.

Additional information

Communicated by J.-P. Dussauge.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Touber, E., Sandham, N.D. Comparison of three large-eddy simulations of shock-induced turbulent separation bubbles. Shock Waves 19, 469–478 (2009). https://doi.org/10.1007/s00193-009-0222-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00193-009-0222-x

Keywords

PACS

Navigation