Skip to main content
Log in

Transient three-dimensional startup side load analysis of a regeneratively cooled nozzle

  • Original Article
  • Published:
Shock Waves Aims and scope Submit manuscript

Abstract

The objective of this effort is to develop a computational methodology to capture the side load physics and to anchor the computed aerodynamic side loads with the available data by simulating the startup transient of a regeneratively cooled, high-aspect-ratio nozzle, hot-fired at sea level. The computational methodology is based on an unstructured-grid, pressure-based, reacting flow computational fluid dynamics and heat transfer formulation, and a transient inlet history based on an engine system simulation. Emphases were put on the effects of regenerative cooling on shock formation inside the nozzle, and ramp rate on side load reduction. The results show that three types of asymmetric shock physics incur strong side loads: the generation of combustion wave, shock transitions, and shock pulsations across the nozzle lip, albeit the combustion wave can be avoided with sparklers during hot-firing. Results from both regenerative cooled and adiabatic wall boundary conditions capture the early shock transitions with corresponding side loads matching the measured secondary side load. It is theorized that the first transition from free-shock separation to restricted-shock separation is caused by the Coanda effect. After which the regeneratively cooled wall enhances the Coanda effect such that the supersonic jet stays attached, while the hot adiabatic wall fights off the Coanda effect, and the supersonic jet becomes detached most of the time. As a result, the computed peak side load and dominant frequency due to shock pulsation across the nozzle lip associated with the regeneratively cooled wall boundary condition match those of the test, while those associated with the adiabatic wall boundary condition are much too low. Moreover, shorter ramp time results show that higher ramp rate has the potential in reducing the nozzle side loads.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

C 1, C 2, C 3, C μ :

Turbulence modeling constants, 1.15, 1.9, 0.25, and 0.09

C p :

Heat capacity

D :

Diffusivity

F yz :

Integrated force in the lateral direction

H :

Total enthalpy

K :

Thermal conductivity

k :

Turbulent kinetic energy

p :

Pressure

Q :

Heat flux

T :

Temperature

t :

Time

u i :

Mean velocities in three directions

x :

Cartesian coordinates

α :

Species mass fraction

\({\varepsilon}\) :

Turbulent kinetic energy dissipation rate

θ :

Energy dissipation contribution

μ :

Viscosity

μ t :

Turbulent eddy viscosity \({(=\rho{C}_{\mu }{k}^{2}/\varepsilon}\))

Π:

Turbulent kinetic energy production

ρ :

Density

σ :

Turbulence modeling constants

τ :

Shear stress

ω :

Chemical species production rate

r:

Radiation

t:

Turbulent flow

w:

Wall

References

  1. Nave, L.H., Coffey, G.A.: Sea level side loads in high-area-ratio rocket engines. AIAA Paper 73-1284, Reston, VA (1973)

  2. Cikanek, H.A.: Characteristics of space shuttle main engine failures. AIAA Paper 87-1939, Reston, VA (1987)

  3. Brown, A.M., Ruf, J., Reed, D., D’Agostino, M.D., Keanini, R.: Characterization of side load phenomena using measurement of fluid/structure interaction. AIAA Paper 2002-3999, Reston, VA (2002)

  4. Winterfeldt, L., Laumert, B., Tano, R., Geneau, J.F., Blasi, R., Hagemann, G.: Redesign of the Vulcain 2 nozzle extension. AIAA Paper 2005-4536, Tucson, AZ (2005)

  5. Watanabe, Y., Sakazume, N., Tsuboi, M.: LE-7A engine nozzle problems during the transient operations. AIAA Paper 2002-3841, Reston, VA (2002)

  6. Hagemann, G., Terhardt, M., Frey, M., Reijasse, P., Onofri, M., Nasuti, F., Ostlund, J.: Flow separation and side-loads in rocket nozzles. In: 4th International Symposium on Liquid Space Propulsion, March 12–15, DLR Lampoldshausen (2000)

  7. Wang T.-S.: Numerical study of the transient nozzle flow separation of liquid rocket engines. Comput. Fluid Dyn. J. 1, 319–328 (1992)

    Google Scholar 

  8. Chen C.L., Chakravathy S.R., Hung C.M.: Numerical investigation of separated flows. AIAA J. 32, 1836–1843 (1994). doi:10.2514/3.12181

    Article  Google Scholar 

  9. Yonezawa, K., Yokota, K., Tsujimoto, K., Sakazume, N., Watanabe, Y.: Three-dimensional unsteady flow simulation of compressed truncated perfect nozzles. AIAA Paper 2002-3991, Reston, VA (2002)

  10. Boccaletto, L., Lequette, L.: CFD computation for rocket engine start-up simulation. AIAA Paper 2005-4438, Reston, VA (2005)

  11. Wang, T.-S.: Transient two-dimensional analysis of side load in liquid rocket engine nozzles. AIAA Paper 2004-3680, Reston, VA (2004)

  12. Tomita, T., Sakamoto, H., Onodera, T., Sasaki, M., Takahashi, M., Tamura, H., Watanabe, Y.: Experimental evalualtion of side-load characteristics on TP, CTP, and TO nozzles. AIAA Paper 2004-3678, Reston, VA (2004)

  13. Chang C.L., Kronzon Y., Merkle C.L.: Time-iterative solutions of viscous supersonic nozzle flows. AIAA J. 26, 1208–1215 (1988). doi:10.2514/3.10030

    Article  Google Scholar 

  14. Shimura K., Asako Y., Lee J.H.: Numerical analysis for supersonic flows in a cooled nozzle. Numer. Heat Transf. 26, 631–641 (1994). doi:10.1080/10407789408956014

    Article  Google Scholar 

  15. Wang T.-S.: Multidimensional unstructured-grid liquid rocket engine nozzle performance and heat transfer analysis. J. Propuls. Power 22, 78–84 (2006). doi:10.2514/1.14699

    Article  Google Scholar 

  16. Shang, H.M., Chen, Y.-S.: Unstructured adaptive grid method for reacting flow computation. AIAA Paper 1997-3183, Seattle, WA (1997)

  17. Wang T.-S., Chen Y.-S., Liu J., Myrabo L.N., Mead F.B. Jr.: Advanced performance modeling of experimental laser lightcraft. J. Propuls. Power 18, 1129–1138 (2002). doi:10.2514/2.6054

    Article  Google Scholar 

  18. Chang, G., Ito, Y., Ross, D., Chen, Y.-S., Zhang, S., Wang, T.-S.: Numerical simulations of single flow element in a nuclear thermal thrust chamber. AIAA Paper 2007-4143, Miami, FL (2007)

  19. Chen, Y.-S., Kim, S.W.: Computation of turbulent flows using an extended \({k-\varepsilon}\) turbulence closure model. NASA CR-179204 (1987)

  20. Wang T.-S., Droege A., D’Agostino M., Lee Y.-C., Williams R.: Asymmetric base-bleed effect on X-33 aerospike plume induced base-heating environment. J. Propuls. Power 20, 385–393 (2004). doi:10.2514/1.10385

    Article  Google Scholar 

  21. Wang T.-S., Luong V.: Hot-gas-side and coolant-side heat transfer in liquid rocket engine combustors. J. Thermophys. Heat Transf. 8, 524–530 (1994). doi:10.2514/3.574

    Article  Google Scholar 

  22. Steinbrenner, J.P., Chawner, J.R., Fouts, C.: Multiple block grid generation in the interactive environment. AIAA Paper 90-1602, Reston, VA (1990)

  23. Svehla, R.A., McBride, B.J.: FORTRAN IV computer program for calculation of thermodynamic and transport properties of complex chemical systems. NASA TN D-7056 (1973)

  24. Nguyen A.T., Deniau H., Girard S., De Roquefort T.A.: Unsteadiness of flow separation and end-effects regime in a thrust-optimized contour rocket nozzle. Flow Turbul. Combus. 71, 161–181 (2003). doi:10.1023/B:APPL.0000014927.61427.ad

    Article  Google Scholar 

  25. Coanda, H.: Device for deflecting a stream of elastic fluid projected into an elastic fluid. US Patent # 2,052,869, 1936

  26. Kumada M., Mabuchi I., Oyakawa K.: Studies on heat transfer to turbulent jets with adjacent boundaries. Bull. Jpn Soc. Mech. Eng. 16, 1712–1722 (1973)

    Article  Google Scholar 

  27. Watanabe, Y., Sakazume, N., Yonezawa, K., Tsujimoto, Y.: LE-7A engine nozzle flow separation phenomenon and the possibility of RSS suppression by the step inside the nozzle. AIAA Paper 2004-4014, Reston, VA (2004)

  28. Larson E.W., Ratekin G.H.: Structural response to the SSME fuel feedline to unsteady shock oscillations. Shock Vib. Bull. Bull. 52(Part 2), 177–182 (1982)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ten-See Wang.

Additional information

Communicated by A. Hadjadj.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, TS. Transient three-dimensional startup side load analysis of a regeneratively cooled nozzle. Shock Waves 19, 251–264 (2009). https://doi.org/10.1007/s00193-009-0201-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00193-009-0201-2

Keywords

PACS

Navigation