Skip to main content
Log in

Shock waves in reactive hydrodynamics

  • Original Article
  • Published:
Shock Waves Aims and scope Submit manuscript

Abstract

Using the weakly non-linear geometrical acoustics theory, we obtain the small amplitude high frequency asymptotic solution to the basic equations in Eulerian coordinates governing one dimensional unsteady planar, spherically and cylindrically symmetric flow in a reactive hydrodynamic medium. We derive the transport equations for the amplitudes of resonantly interacting waves. The evolutionary behavior of non-resonant wave modes culminating into shock waves is also studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chapman D.L.: On the rate of explosion in gases. Philos. Mag. J. Sci. 47(5), 90–104 (1899)

    Article  Google Scholar 

  2. Jouget M.E.: Sur la propagation des discontinuites dans les fluides. C. R. 132, 673–676 (1901)

    Google Scholar 

  3. Zel’Dovich Y.B.: On the theory of the propagation of detonation in gaseous systems. J. Exp. Theor. Phys. USSR 10, 542–568 (1940)

    Google Scholar 

  4. Von Neumann, J.: Theory of Detonation Waves, OSRD Report No. 549 (1942)

  5. Doering W.: zur Theorie der Detonation. Ann. Phys. 43, 421–428 (1943)

    Article  Google Scholar 

  6. Courant R., Friedrichs K.O.: Supersonic Flow and Shock Waves. Interscience, New York (1948)

    MATH  Google Scholar 

  7. Fickett W., Davis W.C.: Detonation. University of California Press, Berkeley (1979)

    Google Scholar 

  8. Whitham G.B.: Linear and Nonlinear Waves. Wiley, New York (1974)

    MATH  Google Scholar 

  9. Moodie T.B., He Y., Barclay D.W.: Wavefront expansions for nonlinear hyperbolic waves. Wave Motion 14, 347–367 (1991)

    Article  MathSciNet  Google Scholar 

  10. He Y., Moodie T.B.: Two-wave interactions for weakly nonlinear hyperbolic waves. Stud. Appl. Math. 88, 241–267 (1993)

    Article  MathSciNet  Google Scholar 

  11. He Y., Moodie T.B.: Shock wave tracking for nonlinear hyperbolic systems exhibiting local linear degeneracy. Stud. Appl. Math. 89, 195–232 (1993)

    Article  MathSciNet  Google Scholar 

  12. He Y., Moodie T.B.: Solvability and nonlinear geometrical optics for systems of conservation laws having spatially dependent flux functions. Can. Appl. Math. Q. 2, 207–230 (1994)

    MathSciNet  MATH  Google Scholar 

  13. He Y., Moodie T.B.: Geometrical optics and post shock behaviour for nonlinear conservation laws. Appl. Anal. 57, 145–176 (1995)

    Article  MathSciNet  Google Scholar 

  14. Sharma V.D., Radha Ch.: Similarity solutions for converging shock in a relaxing gas. Int. J. Eng. Sci. 33, 535–553 (1995)

    Article  MathSciNet  Google Scholar 

  15. Sharma V.D., Srinivasan G.K.: Wave interaction in a non-equilibrium gas flow. Int. J. Nonlinear Mech. 40, 1031–1040 (2005)

    Article  Google Scholar 

  16. Sharma V.D., Arora R.: Similarity solutions for strong shocks in an ideal gas. Stud. Appl. Math. 114, 375–394 (2005)

    Article  MathSciNet  Google Scholar 

  17. Arora R., Sharma V.D.: Convergence of strong shock in a Van der Waals gas. SIAM J. Appl. Math. 66, 1825–1837 (2006)

    Article  MathSciNet  Google Scholar 

  18. Arora R.: Similarity solutions and evolution of weak discontinuities in a Van der Waals gas. Can. Appl. Math. Q. 13, 297–311 (2005)

    MathSciNet  MATH  Google Scholar 

  19. Choquet-Bruhat V.: Ondes asymptotique et approchees pour systemes d’equations aux derivees partielles nonlineaires. J. Math. Pure Appl. 48, 119–158 (1969)

    MATH  Google Scholar 

  20. Germain, P.: Progressive Waves, 14th Prandtl Memorial Lecture, pp. 11–30. der DGLR, Jarbuch (1971)

  21. Hunter J.K., Keller J.: Weakly nonlinear high frequency waves. Commun. Pure Appl. Math. 36, 547–569 (1983)

    Article  MathSciNet  Google Scholar 

  22. Majda A., Rosales R.: Resonantly interacting weakly nonlinear hyperbolic waves. Stud. Appl. Math. 71, 149–179 (1984)

    Article  MathSciNet  Google Scholar 

  23. Hunter J.K., Majda A., Rosales R.: Resonantly interacting weakly nonlinear hyperbolic waves II. Several space variables. Stud. Appl. Math. 75, 187–226 (1986)

    Article  MathSciNet  Google Scholar 

  24. Logan J.D., Bdzil J.B.: Self-similar solution of the spherical detonation problem. Combust. Flame 46, 253–269 (1982)

    Article  Google Scholar 

  25. Majda A.J., Rosales R., Schonbek M.: A canonical system of integro-differential equations arising in resonant nonlinear acoustics. Stud. Appl. Math. 79, 205–262 (1988)

    Article  MathSciNet  Google Scholar 

  26. Shefter M., Rosales R.R.: Quasi-periodic solutions in weakly nonlinear gas dynamics. Part I. Numerical results in the inviscid case. Stud. Appl. Math. 103, 279–337 (1999)

    Article  MathSciNet  Google Scholar 

  27. Cehelsky P., Rosales R.R.: Resonantly interacting weakly nonlinear hyperbolic waves in the presence of shocks: A single space variable in a homogeneous, time independent medium. Stud. Appl. Math. 74, 117–138 (1986)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajan Arora.

Additional information

Communicated by A. Merlen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arora, R., Tomar, A. & Singh, V.P. Shock waves in reactive hydrodynamics. Shock Waves 19, 145–150 (2009). https://doi.org/10.1007/s00193-009-0192-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00193-009-0192-z

Keywords

PACS

Navigation