Skip to main content
Log in

Fundamentals of rotating detonations

  • Original Article
  • Published:
Shock Waves Aims and scope Submit manuscript

Abstract

A rotating detonation propagating at nearly Chapman–Jouguet velocity is numerically stabilized on a two-dimensional simple chemistry flow model. Under purely axial injection of a combustible mixture from the head end of a toroidal section of coaxial cylinders, the rotating detonation is proven to give no average angular momentum at any cross section, giving an axial flow. The detonation wavelet connected with an oblique shock wave ensuing to the downstream has a feature of unconfined detonation, causing a deficit in its propagation velocity. Due to Kelvin–Helmholtz instability existing on the interface of an injected combustible, unburnt gas pockets are formed to enter the junction between the detonation and oblique shock waves, generating strong explosions propagating to both directions. Calculated specific impulse is as high as 4,700 s.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nicholls, J.A., Wilkinson, H.R., Morrison, R.B.: Intermediate detonation as a thrust-producing mechanism. Jet Propuls. 27 (1957)

  2. Voitsekhovskii, B.V.: Stationary detonation. Doklady USSR Acad. Sci. 129 (1959)

  3. Voitsekhovskii, B.V., Mitrofanov, V.V., Topchiyan, M.E.: Structure of the detonation front in gases. Siberian Branch USSR Acad. Sci. Publ., Novosibirsk (1963)

  4. Bykowski F.A., Mitrofanov V.V., Vedernikov E.F.: Continuous detonation combustion of fuel–air mixtures, Combustion. Explos. Shock Waves 33, 344–353 (1997). doi:10.1007/BF02671875

    Article  Google Scholar 

  5. Bykovskii F.A., Zhdan S.A., Verdernikov E.F.: Continuous spin detonation in ducted annular combustors. In: Roy, G., Frolov, S.(eds) Application of Detonation to Propulsion, pp. 174–179. Torus press, Moscow (2004)

    Google Scholar 

  6. Wolanski P., Kindracki J., Fujiwara T.: An experimental study of small rotating detonation engine. In: Roy, G, Frolov, S, Sinibaldi, J.(eds) Pulsed and Continuous Detonations, pp. 332–338. Torus press, Moscow (2006)

    Google Scholar 

  7. Zhdan S.A., Bykovskii F.A., Vedernikov E.F.: Mathematical modeling of a rotating detonation wave in a hydrogen-oxygen mixture, Combustion. Explos. Shock Waves 43, 449–459 (2007). doi:10.1007/s10573-007-0061-y

    Article  Google Scholar 

  8. Dabora E.K., Nicholls J.A., Morrison R.B.: Tenth Symposium on Combustion, pp. 817. Combustion Institute, Pittsburgh (1965)

    Google Scholar 

  9. Fujiwara T., Tsuge S.: Quasi-onedimensional analysis of gaseous free detonations. J. Phys. Soc. Jpn. 33, 237–241 (1972). doi:10.1143/JPSJ.33.237

    Article  Google Scholar 

  10. Tsuge S., Fujiwara T.: On the propagation velocity of a detonation-shock combined wave. Z. Angew. Math. Mech. 54, 157–164 (1974). doi:10.1002/zamm.19740540305

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshi Fujiwara.

Additional information

Communicated by F. Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hishida, M., Fujiwara, T. & Wolanski, P. Fundamentals of rotating detonations. Shock Waves 19, 1–10 (2009). https://doi.org/10.1007/s00193-008-0178-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00193-008-0178-2

Keywords

PACS

Navigation