Skip to main content
Log in

Shock and detonation wave diffraction at a sudden expansion in gas–particle mixtures

  • Original Article
  • Published:
Shock Waves Aims and scope Submit manuscript

Abstract

Numerical modeling of the propagation of shock and detonation waves is carried out in a duct with an abrupt expansion for a heterogeneous mixture of fine particles of aluminum and oxygen. A considerable difference from corresponding flows in pure gas is found. The influence of the size and mass loading of particles on the flow and shock wave structure behind the backward-facing step is determined. As in gaseous detonations, three types of scenarios of detonation development are obtained. Specific features of the flow structure are revealed such as deformation of the combustion front due to interaction between the relaxation zone and the vortex structure. The influence of particle size and channel width on detonation propagation is analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Skews B.W.: The perturbated region behind a diffracting shock wave. J. Fluid Mech. 29(4), 705–719 (1967). doi:10.1017/S0022112067001132

    Article  Google Scholar 

  2. Hillier R.: Computation of shock wave diffraction at a ninety degrees convex edge. Shock Waves 1, 89–98 (1991). doi:10.1007/BF01414904

    Article  Google Scholar 

  3. Abate G., Shyy W.: Dynamic structure of confined shocks undergoing sudden expansion. Prog. Aerosp. Sci. 38, 23–42 (2002). doi:10.1016/S0376-0421(01)00016-1

    Article  Google Scholar 

  4. Takayama K., Inoue O.: Shock wave diffraction over a 90 degree sharp corner. Shock Waves 1, 301–312 (1991). doi:10.1007/BF01418886

    Article  Google Scholar 

  5. Wang B.Y., Wu Q.S., Wang C., Igra O., Falcovitz J.: Shock wave diffraction by a cavity filled with dusty gas. Shock Waves 11, 7–14 (2001). doi:10.1007/PL00004061

    Article  Google Scholar 

  6. Bedarev I., Gosteev Y., Fedorov A.: Shock-wave-initiated lifting of particles from a cavity. J. Appl. Mech. Tech. Phys. 48(1), 17–26 (2007). doi:10.1007/s10808-007-0004-0

    Article  Google Scholar 

  7. Shepherd, J.E., Schultz, E., Akbar, R.: Detonation diffraction. In: Ball, G., Hillier, R., Roberts, G. (eds.) Proceedings of the 22nd International Symposium on Shock Waves, vol. 1, pp. 41– 48 (2000)

  8. Pantow E.G., Fischer M., Kratzel T.: Decoupling and recoupling of detonation waves associated with sudden expansion. Shock Waves 6, 131–137 (1996). doi:10.1007/BF02510993

    Article  Google Scholar 

  9. Arienti M., Shepherd J.E.: A numerical study of detonation diffraction. J. Fluid Mech. 529, 117–146 (2005). doi:10.1017/S0022112005003319

    Article  MathSciNet  Google Scholar 

  10. Kutushev A.G., Shorokhova L.V.: Numerical investigation of the processes of combustion and detonation of air-fuel mixtures of unitary fuel in abruptly expanding pipes. Chem. Phys. 22(8), 94–99 (2003)

    Google Scholar 

  11. Kapila A.K., Schwendeman D.W., Bdzil J.B., Henshaw W.D.: A Study of Detonation Diffraction in the Ignition-and-Growth Model. Combust. Theory Model. No. 11, 781–822 (2007). doi:10.1080/13647830701235774

    Article  MathSciNet  Google Scholar 

  12. Medvedev A.E., Fedorov A.V., Fomin V.M.: Description of ignition and combustion of gas mixtures with solid particles by methods of the mechanics of continuous media. Combust. Expl. Shock Waves 20(2), 127–132 (1984). doi:10.1007/BF00751577

    Article  Google Scholar 

  13. Fedorov A.V.: Structure of heterogeneous detonation of aluminum particles dispersed in oxygen. Combust. Expl. Shock Waves 28(3), 277–286 (1992). doi:10.1007/BF00749644

    Article  Google Scholar 

  14. Strauss W.A.: Investigation of the detonation of aluminum powder-oxygen mixtures. AIAA J. 6(12), 1753–1761 (1968). doi:10.2514/3.4855

    Article  Google Scholar 

  15. Dreizin E.L.: On the mechanism of asymmetric aluminum particle combustion. Combust. Flame 117, 841–850 (1999). doi:10.1016/S0010-2180(98)00125-4

    Article  Google Scholar 

  16. Beckstead M.W.: Correlating Aluminum burning times. Combust. Expl. Shock Waves 41(5), 487–495 (2005). doi:10.1007/s10573-005-0061-8

    Article  Google Scholar 

  17. Borisov A.A., Khasainov B.A., Veyssiere B., Saneev E.L., Fomin I.B., Khomik S.V.: On detonation of aluminum dusts in air and oxygen. Sov. J. Chem. Phys. 102, 369–402 (1992)

    Google Scholar 

  18. Fedorov A.V., Khmel T.A., Fomin V.M.: Non-equilibrium model of steady detonations in aluminum particles—oxygen suspensions. Shock Waves 9, 313–318 (1999). doi:10.1007/s001930050191

    Article  Google Scholar 

  19. Fedorov A.V., Khmel T.A.: Numerical simulation of formation of cellular heterogeneous detonation of aluminum particles in oxygen. Combust. Expl. Shock Waves 41(4), 435–448 (2005). doi:10.1007/s10573-005-0054-7

    Article  Google Scholar 

  20. Fedorov A.V., Khmel T.A.: Numerical Simulation of Detonation Initiation With a Shock Wave Entering a Cloud of Aluminum Particles. Combust. Expl. Shock Waves 38(1), 101–108 (2002)

    Article  Google Scholar 

  21. Boiko V.M., Kiselev V.P., Kiselev S.P., Papyrin A.N., Poplavsky S.V., Fomin V.M.: Shock wave interaction with a cloud of particles. Shock Waves 7, 275–286 (1997). doi:10.1007/s001930050082

    Article  Google Scholar 

  22. Henderson C.B.: Drag coeffcient of spheres in continuum and rarefied flows. AIAA J. 14(6), 707–708 (1976). doi:10.2514/3.61409

    Article  Google Scholar 

  23. Khmel T.A.: Numerical simulation of two-dimensional detonation flows in reactive particle gas suspensions. Matematicheskoe modelirovanie 16(6), 73–77 (2004) (in Russian)

    MATH  Google Scholar 

  24. Fedorov A.V., Khmel T.A.: Numerical technologies for investigations of heterogeneous detonations of gas particle suspensions. Matematicheskoe modelirovanie 18(8), 49–63 (2006) (in Russian)

    MathSciNet  MATH  Google Scholar 

  25. Khmel’ T.A., Fedorov A.V.: Interaction of a shock wave with a cloud of aluminum particles in a channel. Combust. Expl. Shock Waves 38(2), 206–214 (2002). doi:10.1023/A:1014959117291

    Article  Google Scholar 

  26. Fedorov A.V., Kharlamova Y.V., Khmel’ T.A.: Reflection of a shock wave in a dusty cloud. Combust. Expl. Shock Waves 43(1), 104–113 (2007). doi:10.1007/s10573-007-0015-4

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. A. Khmel.

Additional information

Communicated by L. Bauwens.

This paper is based on work that was presented at the 21th International Colloquium on the Dynamics of Explosions and Reactive Systems, Poitiers, France, July 23–27, 2007.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fedorov, A.V., Khmel, T.A. & Kratova, Y.V. Shock and detonation wave diffraction at a sudden expansion in gas–particle mixtures. Shock Waves 18, 281–290 (2008). https://doi.org/10.1007/s00193-008-0162-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00193-008-0162-x

Keywords

PACS

Navigation