Skip to main content
Log in

Atomistic phenomena in dense fluid shock waves

  • Original Article
  • Published:
Shock Waves Aims and scope Submit manuscript

Abstract

The shock structure problem is one of the classical problems of fluid mechanics and at least for non-reacting dilute gases it has been considered essentially solved. Here we present a few recent findings, to show that this is not the case. There are still new physical effects to be discovered provided that the numerical technique is general enough to not rule them out a priori. While the results have been obtained for dense fluids, some of the effects might also be observable for shocks in dilute gases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rankine, W.V.M.: On the thermodynamic theory of waves of finite longitudinal disturbance. Philos. Trans. R. Soc. Lond. 160, 277–288 (1870)

    Article  Google Scholar 

  2. Rayleigh. Aerial plane waves of finite amplitude. Proc. R. Soc. Lond. A 84(570), 247–284 (1910)

  3. Taylor, G.I.: The conditions necessary for discontinuous motion in gases. Proc. R. Soc. Lond. A 84(571), 371–377 (1910)

    Article  Google Scholar 

  4. Bird, G.A.: Approach to translational equilibrium in a rigid sphere gas. Phys. Fluids 6(10), 1518–1519 (1963)

    Article  Google Scholar 

  5. Bird, G.A.: Shock wave structure in a rigid sphere gas. In: de Leeuw, J.H.(eds) Rarefied Gas Dynamics. vol. I, pp. 216–222. Academic Press, New York (1965)

    Google Scholar 

  6. Bird, G.A.: Direct simulation and the Boltzmann equation. Phys. Fluids 13(11), 2676–2681 (1970)

    Article  MATH  Google Scholar 

  7. Alder, B.J., Wainwright, T.E.: Phase transition for a hard sphere system. J. Chem. Phys. 27, 1208–1209 (1957)

    Article  Google Scholar 

  8. Hoover, W.G.: Structure of shock wave front in a liquid. Phys. Rev. Lett. 42(23), 1531–1534 (1979)

    Article  Google Scholar 

  9. Holian, B.L., Hoover, W.G., Moran, B., Straub, G.K.: Shock-wave structure via non-equilibrium molecular-dynamics and Navier-Stokes continuum mechanics. Phys. Rev. A 22(6), 2798–2808 (1980)

    Article  Google Scholar 

  10. Schlamp, S., Hathorn, B.C.: Molecular alignment in a shock wave. Phys. Fluids 18(9), 096101 (2006)

    Article  Google Scholar 

  11. Schlamp, S., Hathorn, B.C.: Higher moments of the velocity distribution function in dense-gas shocks. J. Comput. Phys. 223(1), 305–315 (2007)

    Article  MATH  Google Scholar 

  12. Schlamp, S., Hathorn, B.C.: Incomplete molecular chaos within dense-fluid shock waves. Phys. Rev. E 76, 026314 (2007)

    Article  Google Scholar 

  13. Schlamp, S.: Shock wave structure in dense argon and nitrogen—molecular dynamics simulations of moving shock waves. Habilitation thesis, Switzerland (2007)

  14. Tsai, D.H., Trevino, S.F.: Thermal relaxation in a dense liquid under shock compression. Phys. Rev. A 24(5), 2743–2757 (1981)

    Article  Google Scholar 

  15. Salomons, E., Mareschal, M.: Usefulness of the Burnett description of strong shock waves. Phys. Rev. Lett. 69(2), 269–272 (1992)

    Article  Google Scholar 

  16. Kum, O., Hoover, W.G., Hoover, C.G.: Temperature maxima in stable two-dimensional shock waves. Phys. Rev. E 56(1), 462–465 (1997)

    Article  Google Scholar 

  17. Macpherson, A.K.: Formation of shock waves in a dense gas using a molecular–dynamics type technique. J. Fluid Mech. 45, 601–621 (1971)

    Article  MATH  Google Scholar 

  18. Horowitz, J., Woo, M., Greber, I.: Molecular dynamics simulation of a piston–driven shock wave. Phy. Fluids (Gallery of Fluid Motion) 7(9), S6 (1995)

    Google Scholar 

  19. Woo, M., Greber, I.: Molecular dynamics simulation of piston–driven shock wave in hard sphere gas. AIAA J. 37(2), 215–221 (1999)

    Article  Google Scholar 

  20. Tokumasu, T., Matsumoto, Y.: Dynamic molecular collision (DMC) model for rarefied gas flow simulations by the DSMC method. Phys. Fluids 11(7), 1907–1920 (1999)

    Article  MATH  Google Scholar 

  21. Refson, K.: Moldy: A portable molecular dynamics simulation program for serial and parallel computers. Comput. Phys. Commun. 126(3), 310–329 (2000)

    Article  MATH  Google Scholar 

  22. Murthy, C.S., O’Shea, S.F., McDonald, I.R.: Electrostatic interactions in molecular crystals—lattics dynamics of solid nitrogen and carbon dioxide. Mol. Phys. 50(3), 531–541 (1983)

    Article  Google Scholar 

  23. Linzer, M., Hornig, D.F.: Structure in shock fronts in argon and nitrogen. Phys. Fluids 6(12), 1661 (1963)

    Article  Google Scholar 

  24. Montanero, J.M., de Haro, M.L., Santos, A., Garzo, V.: Simple and accurate theory for strong shock waves in a dense hard-sphere fluid. Phys. Rev. E 60(6), 7592–7595 (1999)

    Article  Google Scholar 

  25. Holway, L.H.: Temperature overshoots in shock waves. Phys. Fluids 8(10), 1905–1906 (1965)

    Article  Google Scholar 

  26. Yen, S.M.: Temperature overshoot in shock waves. Phys. Fluids 9(7), 1417–1418 (1966)

    Article  Google Scholar 

  27. Phamvan Diep, G.C., Erwin, D.A., Muntz, E.P.: Nonequilibrium molecular motion in a hypersonic shock wave. Science 245, 624–626 (1989)

    Article  Google Scholar 

  28. Schmidt, B.: Electron beam density measurements in shock waves in argon. J. Fluid Mech. 39, 361–373 (1969)

    Article  Google Scholar 

  29. Hicks, B.L., Yen, S.M., Reilly, B.J.: The internal structure of shock waves. J. Fluid Mech. 53, 85–111 (1972)

    Article  MATH  Google Scholar 

  30. Elliott, J.P.: Validity of Navier-Stokes relation in a shock–wave. Can. J. Phys. 53(6), 583–586 (1975)

    Google Scholar 

  31. Teschke, O., de Souza, E.F.: Water molecule clusters measured at water/air interfaces using atomic force microscopy. Phys. Chem. Chem. Phys. 7(22), 3856–3865 (2005)

    Article  Google Scholar 

  32. Gaines, G.L.: Insoluble Monolayers at the Liquid–Gas Interfaces. Interscience, New York (1966)

    Google Scholar 

  33. Li, M., Acero, A.A., Huang, Z., Rice, S.A.: Formation of an ordered Langmuir monolayer by a non-polar chain molecule. Nature 367(6459), 151–153 (1994)

    Article  Google Scholar 

  34. Dill, K.A., Flory, P.J.: Molecular organization in micelles and vesicles. Proc. Nat. Acad. Sci. USA Part 1: Phys. Sci. 78(2), 676–680 (1981)

    Article  MathSciNet  Google Scholar 

  35. Collings, P.J., Hird, M.: Introduction to Liquid Crystals: Chemistry and Physics. Taylor & Francis, London (1997)

    Google Scholar 

  36. Cercignani, C.: The Boltzmann Equation and its Applications. Springer, New York (1988)

    MATH  Google Scholar 

  37. Evans, D.J., Cohen, E.G.D.: Probability of second law violations in shearing steady states. Phys. Rev. Lett. 71(15), 2401–2404 (1993)

    Article  MATH  Google Scholar 

  38. Green, M.S.: Brownian motion in a gas of noninteracting molecules. J. Chem. Phys. 19(8), 1036–1046 (1951)

    Article  MathSciNet  Google Scholar 

  39. Green, M.S.: Markoff random processes and the statistical mechanics of time-dependent phenomena. II. Irreversible processes in fluids. J. Chem. Phys. 22(3), 398–413 (1954)

    Article  MathSciNet  Google Scholar 

  40. Kubo, R.: Statistical-mechanics theory of irreversible processes. 1. General theory and simple applications to magnetic and conduction problems. J. Phys. Soc. Jpn. 12(6), 570–586 (1957)

    Article  MathSciNet  Google Scholar 

  41. Green, M.S.: Comment on a paper of Mori on time-correlation expressions for transport properties. Phys. Rev. 119(3), 829–830 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  42. Cohen, E.G.D.: Kinetic theory of non–equilibrium fluids. Physica A 118(1–3), 17–42 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  43. Grad, H.: On the kinetic theory of rarefied gases. Commun. Pure Appl. Math. 2(4), 331–407 (1949)

    Article  MathSciNet  MATH  Google Scholar 

  44. Tsuge, S.: On the breakdown of the molecular chaos in the presence of translational nonequilibrium. Phys. Lett. A 36(3), 249–250 (1971)

    Article  Google Scholar 

  45. Erpenbeck, J.: Shear viscosity of the hard-sphere fluid via nonequilibrium molecular dynamics. Phys. Rev. Lett. 52(15), 1333–1335 (1984)

    Article  Google Scholar 

  46. Lutsko, J.F.: Molecular chaos, pair correlations, and shear-induced ordering of hard spheres. Phys. Rev. Lett. 77(11), 2225–2228 (1996)

    Article  Google Scholar 

  47. Pöschel, T., Brilliantov, N.V., Schwager, T.: Violation of molecular chaos in dissipative gases. Int. J. Modern Phys. C 13(9), 1263–1272 (2002)

    Article  Google Scholar 

  48. Tamosiunas, K., Csernai, L.P., Magas, V.K., Molnar, E., Nyiri, A.: Modelling of Boltzmann transport equation for freeze-out. J. Phys. G—Nuclear Particle Phys. 31(6), S1001–S1004 (2005)

    Article  Google Scholar 

  49. Root, S., Hardy, R.J., Swanson, D.R.: Continuum predictions from molecular dynamics simulations: shock waves. J. Chem. Phys. 118(7), 3161–3165 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Schlamp.

Additional information

Communicated by C. Needham.

This work was presented as an invited lecture at the 26th International Symposium on Shock Waves, Göttingen, Germany, July 15–20, 2007.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schlamp, S., Hathorn, B.C. Atomistic phenomena in dense fluid shock waves. Shock Waves 17, 397–407 (2008). https://doi.org/10.1007/s00193-008-0121-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00193-008-0121-6

Keywords

PACS

Navigation