Skip to main content
Log in

Contributions to numerical developments in shock waves attenuation in porous filters

  • Original Article
  • Published:
Shock Waves Aims and scope Submit manuscript

Abstract

The paper deals with the numerical method of the compressible gas flow through a porous filter emphasizing the treatment of the interface between a pure gaseous phase and a solid phase. An incident shock wave is initiated in the gaseous phase interacting with a porous filter inducing a transmitted and a reflected wave. To take into account the discontinuity jump in the porosity between the gaseous phase and the porous filter, an approximate Riemann solver is used to compute homogeneous non-conservative Euler equations in porous media using ideal gas state law. The discretization of this problem is based on a finite volume method where the fluxes are evaluated by a “volumes finis Roe” (VFRoe) scheme. A stationary solution is determined with a continuous variable porosity in order to test the numerical scheme. Numerical results are compared with the two-phase shock tube experiments and simulations of a shock wave attenuation and gas filtration in porous filters are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ben-Dor G., Britan A., Elperin T., Igra O. and Jiang J.P. (1997). Experimental investigation of the interaction between weak shock waves and granular layers. Exp. Fluids 22: 432–443

    Article  Google Scholar 

  2. Britan A., Ben-Dor G., Igra O. and Shapiro H. (2001). Shock waves attenuation by granular filters. Int. J. Multiphase Flow 27: 617–634

    Article  Google Scholar 

  3. Levy A., Levi-Hevroni D., Sorek S. and Ben-Dor G. (1999). Derivation of Forchheimer terms and their verification by application to waves propagation in porous media. Int. J. Multiphase Flow 25: 683–704

    Article  Google Scholar 

  4. Rogg B., Hermann D. and Adomait G. (1985). Shock-induced flow in regular arrays of cylinders and packed beds. Int. J. Heat Mass Transf. 28: 2285–2297

    Article  Google Scholar 

  5. Gentil, F., Serve, D., Chevallier, P.: Un filtre innovant pour la protection contre les effets de l’arc interne dans les cellules moyenne tension. Proceedings of the seconde conférence européenne sur les Matériels de Postes HT et MT (Matpost 03), Lyon, France, 20–21 November (2003)

  6. Rochette D. and Bussière W. (2004). Pressure evolution during HBC fuse operation. Plasma Sources Sci. Technol. 13(2): 293–302

    Article  Google Scholar 

  7. Rochette D. and Clain S. (2004). Mathematical model and simulation of gas flow through a porous medium in high breaking capacity fuses. Int. J. Heat Fluid Flow 25: 115–126

    Article  Google Scholar 

  8. Bussière W. (2001). Influence of sand granulometry on electrical characteristics, temperature and electron density during high-voltage fuse arc extinction. J. Phys. D: Appl. Phys. 34(6): 925–935

    Article  Google Scholar 

  9. Bear J. and Bachmat Y. (1990). Introduction to Modeling of Transport Phenomena in Porous Media. Kluwer, Dordrecht

    Book  Google Scholar 

  10. Ishii M. (1975). Thermo-fluid dynamic theory of two-phase flow. Eyrolles, Paris

    MATH  Google Scholar 

  11. Ben-Dor G., Levy A. and Sorek S. (1997). Numerical investigation of the propagation of shock waves in rigid porous materials: solution of the Riemann problem. Int. J. Numer. Methods Heat Fluid Flow 7(8): 801–813

    Article  Google Scholar 

  12. Britan A., Ben-Dor G., Elperin T., Igra O. and Jiang J.P. (1997). Gas filtration during the impact of weak shock waves on granular layers. Int. J. Multiphase Flow 23: 473–491

    Article  Google Scholar 

  13. Faucher E., Hérard J.M., Barret M. and Toulemonde C. (2000). Computation of flashing flows in variable cross section ducts. Int. J. Comput Fluid Dyn. 13(3): 365–391

    Article  MathSciNet  Google Scholar 

  14. Gallouët, T., Masella, J.M.: Un schéma de Godunov approché. Comptes Rendus Académie des Sciences Paris, vol. 323, Série I, pp. 77–84 (1996)

  15. Hérard, J.M., Mogavéro, P., Simonin, O.: Computation of shock waves entering a dense granular material, AIAA Paper 99-3332, AIAA Computational Fluid Dynamics conference, 14th, Norfolk, VA, June 28–July 1 (1999)

  16. Rochette D., Clain S. and Buffard T. (2005). Numerical scheme to compute a compressible gas flow in variable porosity media. Int. J. Comput. Fluid Dyn. 19(4): 299–309

    Article  MathSciNet  Google Scholar 

  17. Bortolozzi R.A. and Deiber J.A. (2001). Comparison between two-and one-field models for natural convection in porous media. Chem. Eng. Sci. 56: 157–172

    Article  Google Scholar 

  18. Greenberg J.M. and LeRoux A.Y. (1996). A well-balanced scheme for the numerical processing of source terms in hyperbolic equations. SIAM J. Numer. Anal. 33(1): 1–16

    Article  MathSciNet  Google Scholar 

  19. Faille I., Gallouët T. and Masella J.M. (1999). On an approximate Godunov scheme. Int. J. Comput. Fluid Dyn. 123: 133–149

    MathSciNet  MATH  Google Scholar 

  20. Touzani, R.: Object Finite Element Library, Copyright © 1998–2003 Rachid Touzani (2003). http://www.lma.univ-bpclermont. fr/touzani/ofeli.html

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Rochette.

Additional information

Communicated by A.K. Hayashi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rochette, D. Contributions to numerical developments in shock waves attenuation in porous filters. Shock Waves 17, 103–112 (2007). https://doi.org/10.1007/s00193-007-0095-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00193-007-0095-9

Keywords

PACS

Navigation