Skip to main content
Log in

Mesodynamics of shock waves in a polycrystalline metal

  • Original Article
  • Published:
Shock Waves Aims and scope Submit manuscript

Abstract

Simulation of the shock compression of polycrystalline α-iron at the mesoscale has been carried out using a two-dimensional, quasi-MD code. Grains of about 15 μm are randomly distributed to simulate the polycrystal. Results show the presence of a particle velocity dispersion comparable to the level observed experimentally. Other unique features include an eddy-like velocity field (meso rotation) and chaotic wave fronts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mescheryakov Yu.I., Mahutov N.A. and Atroshenko S.A. (1994). Micromechanics of dynamic fracture of ductile high strength steel. J. Mech. Phys. Solids 42: 1435–1457

    Article  Google Scholar 

  2. Yano K. and Horie Y. (1999). Discrete-element modeling of shock compression of polycrystalline copper. Phys. Rev. B 59: 13672–13680

    Article  Google Scholar 

  3. Asay, J. R., Chhabildas, L.: Paradigms and challenges in shock wave research. In: Horie, Y., Davison, L., Thadhani, N. (eds.) High-Pressure Shock Compression of Solids VI, chap. 2. Springer, New York (2002)

  4. Swegle J.W. and Grady D.E. (1985). Shock viscosity and the prediction of shock wave rise time. J. Appl. Phys. 58: 692–701

    Article  Google Scholar 

  5. Wallace D.C. (1981). Nature of the process of overdriven shocks in metals. Phys. Rev. B 24: 5607–5615

    Article  Google Scholar 

  6. Asay J.R. and Shahinpoor M. (1993). High-Pressure Shock Compression of Solids. Springer, New York

    Book  Google Scholar 

  7. Tang, Z.P., Horie, Y., Psakhie, S.G.: Discrete meso-element modeling of shock processes in powders. In: Davison, L., Horie, Y., Shahinpoor, M. (eds.) High-Pressure Shock Compression of Solids IV, chap. 6. Springer, New York (1997)

  8. Simon, C., Horie, Y.: Modeling the shock response of polycrystals at the mesoscale. In: Furnish, M.D., Elert, M., Russell, T.P., White, C.T. (eds.) Shock Compression of Condensed Matter-2005. AIP, New York (2006)

  9. Yano K. and Horie Y. (2002). Mesomechanics of the α–ɛ transition in iron. Int. J. Plasticity 18: 1427–1446

    Article  Google Scholar 

  10. Band W. and Duvall G.E. (1961). Physical nature of shock propagation. Am. J. Phys. 29: 780–785

    Article  Google Scholar 

  11. Grady D.E. (1981). Strain-rate dependence of the effective viscosity under steady wave shock compression. Appl. Phys. Lett. 38: 825–826

    Article  Google Scholar 

  12. Meyers M.A. and Carvlho M.S. (1976). Shock front irregularities in polycrystalline metals. Mater. Sci. Eng. 24: 131–135

    Article  Google Scholar 

  13. Panin V.E. (1998). Foundations of physical mesomechanics. Phys. Mesomech. 1: 5–20

    Google Scholar 

  14. Makarov P.V. (1998). Physical mesomechanics approach in simulation of deformation and fracture process. Phys. Mesomech. 1: 57–75

    Google Scholar 

  15. Trott W.M., Chhabildas L.C., Baer M.R. and Cataneda J.N. (2002). Investigation of dispersive waves in low-density sugar & HMX using line-image velocity interferometry. In: Furnish, M., Thadhani, N., and Horie, Y. (eds) Shock Compression of Condensed Matter-2001, pp 845–848. AIP, New York

    Google Scholar 

  16. Zhou M. (2002). The virial stress is not a measure of mechanical stress. Mat. Res. Soc. Symp. Proc. 731: 59–70

    Article  Google Scholar 

  17. Grady D.E. and Asay J.R. (1982). Calculation of thermal trapping in shock deformation of aluminum. J. Appl. Phys. 53: 7350–7354

    Article  Google Scholar 

  18. Lipkin J. and Asay J.R. (1977). Reshock & release of shock-compressed 6061-T6 aluminum. J. Appl. Phys. 48: 182–189

    Article  Google Scholar 

  19. Simon C. and Horie Y. (2007). Discrete element simulation of shock waves propagation in polycrystalline copper. J. Mech. Phys. Solids 55: 589–614

    Article  Google Scholar 

  20. Mase G.E. and Mase G.T. (1992). Continuum Mechanics for Engineers, p. 140. CRC Press, Boca Raton

    MATH  Google Scholar 

  21. Cottrell A.H. (1965). Dislocation and Plastic Flow in Crystals. Oxford University Press, Oxford

    Google Scholar 

  22. Horie Y. and Yano K. (1998). Shock-wave initiation of chemical reactions in inorganic powders. Rev. High Pressure Sci. Technol. 7: 864–866

    Article  Google Scholar 

  23. Lee, J.H.: The roles of turbulence in strong shocks & detonation waves. In: Horie, Y., Davison, L., Thadhani, N. (eds.) High-Pressure Shock Compression of Solids VI, chap. 6. Springer, New York (2002)

  24. Graham R.A. (1993). Solids Under High-pressure Shock Compression of Solids: Mechanics, Physics and Chemistry. Springer, New York

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Horie.

Additional information

Communicated by H. Kleine, Guest Editor, ISISWR-3.

This paper was based on work that was presented at the 3rd international symposium on interdisciplinary shock wave research, Canberra, Australia, 1–3, March 2006.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Horie, Y., Case, S. Mesodynamics of shock waves in a polycrystalline metal. Shock Waves 17, 135–141 (2007). https://doi.org/10.1007/s00193-007-0090-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00193-007-0090-1

Keywords

PACS

Navigation