Skip to main content
Log in

Ignition and detonation of solid explosives: a micromechanical burn model

  • Original Article
  • Published:
Shock Waves Aims and scope Submit manuscript

Abstract

This paper describes a new computational framework for modeling splid explosives and proof-of-concept calculations. Our goal is to expand predictive model capability through the inclusion of various micro-mechanical burn processes. We propose a model which is complicated enough to represent underlying physics, but simple enough for engineering scale computations. Key components of the model include energy localization, the growth of hot spots, micro-mechanics in/around hot spots, and a phase-averaged mixture equation of state. The nucleation and growth of locally heated regions is treated by a statistical model based on an exponential size distribution. Proof-of-concept calculations are limited to shock loading, but show the capability of simulating Pop-plots, initial temperature effect, detonation waves in 2D, detonation shock confinement test, and multi-dimensional effects in a unified fashion based on micro-physics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

Roman symbols :

 

a :

gas/solid boundary coordinate

A :

frequency factor

c :

length of hot spot cell

c p :

heat capacity at constant pressure

c v :

heat capacity at constant volume

d 0 :

half thickness of slab

E :

activation energy

G :

mass fraction of evaporating reactant

h :

enthalpy

k :

BKW EOS parameter

\(\dot{m}\) :

mass flux

n :

constant in repulsive force

p :

pressure

p B :

external boundary pressure

p N :

configurational stress

q :

specific heat release

R :

universal gas constant

r :

pressure exponent in bulk gas reaction rate

T :

temperature

W :

average molecular weight of gas mixture

w :

particle velocity

x :

BKW EOS parameter

x i :

mole fraction of species i

Y i :

mass fraction of species i

z :

coordinate

Δh f :

enthalpy of formation

Greek symbols :

 

α:

BKW EOS parameter

β:

BKW EOS parameter

δ:

width of locally heated site

δ g :

thermal layer thickness

ζ:

coordinate used in heat conduction calculation

θ:

BKW EOS parameter

κ:

thermal conductivity

μ:

viscosity

ρ:

density

σ:

BKW EOS parameter

τ:

deviatoric stress

ω:

reaction rate

Φhs :

deposited energy

Subscripts :

 

g :

gas

s :

solid

a :

gas/solid boundary

0:

initial value

Superscripts :

 

hy:

hydro cell quantity

hs:

hot-spot cell quantity

i :

species i

R :

reactant

I :

inert

P :

product

*:

reference state

Accents :

 

_:

volume average

˙:

time derivative

^:

quantity adjusted for the hot-spot cell

References

  1. Afanas’ev, G., Bobolev, V.: Initiation of solid explosives by impact. Isr. Program Sci. Transla. (1971)

  2. Aslam, T., Bdzil, J.: Numerical and theoretical investigations on detonation-inert confinement interaction. In: Proceedings of the 12th International Detonation Symposium (2002)

  3. Aslam, T., Bdzil, J., Hill, L.: Extensions to DSD theory: analysis of PBX 9502 rate stick data. In: Proceedings of the 11th International Detonation Symposium (1998)

  4. Aslam, T., Bdzil, J., Hill, L.: Analysis of the LANL detonation-confinement test. In: AIP Conference Proceedings, Shock Compression of Condensed Matter, vol.706, pp. 831–834 (2003)

  5. Bardenhagen S., Brackbill J., Sulsky D. (2000) Numerical study of stress distribution in sheared granular material in two dimensions. Phys. Rev. E 62(3): 3882–3890

    Article  ADS  Google Scholar 

  6. Bdzil J. (1981) Steady-state two-dimensional detonation. J. Fluid Mech. 108, 195–226

    Article  MATH  ADS  Google Scholar 

  7. Bdzil, J., Aslam, T., Catanach, R., Hill, L., Short, M.: DSD front models: Nonideal explosive detonation in anfo. Tech. Rep. LA-UR-02-4332, LANL (2002)

  8. Bdzil J., Stewart D. (1989) Modeling two-dimensional detonations with detonation shock dynamics. Phys. Fluid A 1(7): 1261–1267

    Article  MATH  MathSciNet  ADS  Google Scholar 

  9. Bukiet, B.G., Lackner, K.S., Menikoff, R.: Understanding curved detonation waves. In: Proceedings of the 10th International Detonation Symposium, pp. 19–26 (1993)

  10. Campbell A., Davis W., Ramsay J., Travis J. (1961) Shock initiation of solid explosives. Phys. Fluid 4(4): 511–521

    Article  ADS  Google Scholar 

  11. Campbell, J., Hyman, J., Shashkov, M.: Mimetic finite difference operators for second-order tensors on unstructured grids. Technical Report LA-UR-01-1806, LANL (2000)

  12. Campbell, J., Shashkov, M.: A compatible lagrangian hydrodynamics algorithm for unstructured grids. Technical Report LA-UR-01-3231, LANL (2000)

  13. Campbell, J., Shashkov, M.: CASH-2D, version 01. Technical Report LA-CC-01-053, LANL (2001)

  14. Chase, M.: JANF thermochemical tables, 3rd edn. The American Chemical Society and the American Institute of Physics for the National Bureau of Standards (1986)

  15. Cochran, S.: A statistical treatment of heterogeneous chemical reaction in shock-initiated explosives. Technical Report UCID-18548, LLNL (1980)

  16. Cowan R., Fickett W. (1956) Calculation of the detonation properties of solid explosives with the Kistiakowsky-Wilson equation of state. J. Chem. Phys. 24(5): 932–939

    Article  ADS  Google Scholar 

  17. Curran D., Seaman L. (1987) Dynamic failure of solids. Phys. Rep. 147(5–6): 253–388

    Article  ADS  Google Scholar 

  18. Fickett W., Davis W. (1979) Detonation. University of California Press, California

    Google Scholar 

  19. Forest, C.A.: Burning and detonation. In: Proceedings of the 7th Symposium (International) on Detonation, pp. 234–243 (1981)

  20. Frey, R.: The initiation of explosive charges by rapid shear. In: Proceedings of the 7th Symposium (International) on Detonation, pp. 36–42 (1982)

  21. Gibbs T., Poplate A. (eds) (1980) LASL Explosive Property Data. University of California Press, California

    Google Scholar 

  22. GMX-6: Selected Hugoniots. Technical Report LA-4167-MS, LANL (1969)

  23. Gustavsen, R., Sheffield, S., Alcon, R., Hill, L.: Shock initiation of new and aged pbx 9501 measured with embedded electromagnetic particle velocity gauges. Technical Report LA-13634-MS, LANL (1999)

  24. Heavens S., Field J. (1974) The ignition of a thin layer of explosive by impact. Proc. R. Soc. Lond. A 338(1612): 77–93

    Article  ADS  Google Scholar 

  25. Hill, L., Aslam, T.: The LANL detonation-confinement test: prototype development and sample results. In: AIP Conference Proceedings, Shock Compression of Condensed Matter, 706, pp. 847–850 (2003)

  26. Hill, L., Bdzil, J., Aslam, T.: Front curvature rate stick measurements and detonation shock dynamics calibration for PBX 9502 over a wide temperature range. In: Proceedings of the 11th International Detonation Symposium, pp. 1029–1037 (1998)

  27. Hill, L., Bdzil, J., Davis, W., Engelke, R., Frost, D.: Front curvature analysis and detonation shock dynamics calibration for pure and sensitized nitromethane. In: AIP Conference Proceedings, Shock Compression of Condensed Matter, 505, pp. 813–816 (1999)

  28. Horie, Y., Hamate, Y., Greening, D.: Mechanistic reactive burn modeling of solid explosives. Technical Report LA-14008, LANL (2003)

  29. Johnson J., Tang P., Forest C. (1985) Shock-wave initiation of heterogeneous reactive solids. J. Appli Phys. 57(9): 4323–4334

    Article  ADS  Google Scholar 

  30. Kang J., Butler P., Baer M. (1992) A thermomechanical analysis of hot spot formation in condensed-phase, energetic materials. Combust. Flame 89(2): 117–139

    Article  Google Scholar 

  31. Kasimov A., Stewart D. (2005) Asymptotic theory of evolution and failure of self-sustained detonations. J. Fluid. Mech. 525, 161–192

    Article  MATH  ADS  MathSciNet  Google Scholar 

  32. Kipp, M.: Modeling granular explosive detonations with shear band concepts. In: Proceedings of the 8th Symposium (International) on Detonation, pp. 35–41 (1985)

  33. Lee E., Tarver C. (1980) Phenomenological model of shock initiation in heterogeneous explosives. Phys. Fluid 23(12): 2362–2372

    Article  ADS  Google Scholar 

  34. Mader, C.: Explosive desensitization by preshocking. Technical Report LA-UR-79-810, LANL (1979)

  35. Margolin, L.: Numerical simulation of fracture. Technical Report LA-UR-82-2167, LANL (1982)

  36. Massoni J., Saurel R., Baudin G., Demol G. (1999) A mechanistic model for shock initiation of solid explosives. Phys. Fluid 11(3): 710–736

    Article  MathSciNet  ADS  MATH  Google Scholar 

  37. Mitani, T., Williams, F.: A model for the deflagration of nitramines. Technical Report SAND-86-8230, SNL (1986)

  38. Nichols III, A.: Statistical hot spot model for explosive detonation. In: International Conference on New Models and Hydrocodes for Shock Wave Processes (2004)

  39. Steinberg D., Cochran S., Guinan M. (1980) A constitutive model for metals applicable at high-strain rate. J. Appl. Phys. 51(3): 1498–1504

    Article  ADS  Google Scholar 

  40. Stewart, D.S., Yoo, S., Davis, W.C.: Equation of state for modeling the detonation reaction zone. In: Proceedings of the 12th International Detonation Symposium (2002)

  41. Wang S., Butler P., Krier H. (1985) Non-ideal equations of state for combusting and detonating explosives. Prog. Energy Combustion Sci. 11(4): 311–331

    Article  Google Scholar 

  42. Yano, K., Horie, Y., Greening, D.: A unifying framework for hot spots and the ignition of energetic materials. Technical Report LA-13794-MS, LANL (2001)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Hamate.

Additional information

Communicated by Y. Horie.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hamate, Y., Horie, Y. Ignition and detonation of solid explosives: a micromechanical burn model. Shock Waves 16, 125–147 (2006). https://doi.org/10.1007/s00193-006-0038-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00193-006-0038-x

Keywords

Pacs

Navigation