Skip to main content
Log in

Aluminum Particles–air Detonation at Elevated Pressures

  • Original Article
  • Published:
Shock Waves Aims and scope Submit manuscript

Abstract

The effect of initial pressure on aluminum particles–air detonation was experimentally investigated in a 13 m long, 80 mm diameter tube for 100 nm and 2 µm spherical particles. While the 100 nm Al–air detonation propagates at 1 atm initial pressure in the tube, transition to the 2 µm aluminum–air detonation occurs only when the initial pressure is increased to 2.5 atm. The detonation wave manifests itself in a spinning wave structure. An increase in initial pressure increases the detonation sensitivity and reduces the detonation transition distance. Global analysis suggests that the tube diameter for single-head spinning detonation or characteristic detonation cell size would be proportional to \(d_{0}^{n} / p_{0}^{m}\) (d 0: aluminum particle size, p 0: initial pressure). Its application to the experimental data results in m ~ O(1) and n ~ O(1) for 1 to 2 µm aluminum–air detonation, thus indicating a strong dependence on initial pressure and gas-phase kinetics for the aluminum reaction mechanism in detonation. Hence, combustion models based on the fuel droplet diffusion theory may not be adequate in describing micrometric aluminum–air detonation initiation, transition and propagation. For 2 µm aluminum–air mixtures at 2 atm initial pressure and below, experiments show a transition to a “dust quasi-detonation” that propagates quasi-steadily with a shock velocity deficit nearly 40% with respect to the theoretical C–J detonation value. The dust quasi- detonation wave can propagate in a tube with a diameter less than 0.4–0.5 times the diameter required for a spinning detonation wave.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tulis A.J., Selman J.R. Detonation tube studies of aluminum particles dispersed in air. In: Proceedings of the 19th Symposium (Intl.) on Combustion, The Combustion Institute, Pittsburgh, pp. 655–663 (1982)

  2. Borisov A.A., Khasainov B.A., Saneev E.L., Formin I.B., Khomik S.V., Veyssiere B. (1991) On the detonation of aluminum suspensions in air and in oxygen. In: Borisov A.A. (ed) Dynamic Structure of Detonation in Gaseous and Dispersed Media. Kluwer, Dordrecht, pp. 215–253

    Chapter  Google Scholar 

  3. Zhang F., Grönig H., van de Ven A. (2001) DDT and detonation waves in dust–air mixtures. Shock Waves 11: 53–71

    Article  Google Scholar 

  4. Zhang F., Grönig H. (1991b) Transition to detonation in cornstarch dust–oxygen and -air mixtures. Combust. Flame 86: 21–32

    Article  Google Scholar 

  5. Friedman R., Macek A. (1962) Ignition and combustion of aluminum particles in hot ambient gases. Combust. Flame 6: 9–19

    Article  Google Scholar 

  6. Friedman R., Macek A. Combustion studies of single aluminum particles. In: Proceedings of the 9th Symp (Intl.) on Comb. The Combustion Institute, Pittsburgh, pp. 703–712 (1963)

  7. Macek A. Fundamentals of combustion of single aluminum and beryllium particles. In: Proceedings of the 11th Symp (Intl.) on Comb. The Combustion Institute, Pittsburgh, pp. 203–217 (1967)

  8. Davis A. (1963) Solid propellants: the combustion of particles of metal ingredients. Combust. Flame 7: 227–234

    Article  Google Scholar 

  9. Pokhil P.F., Belyayev A.F., Frolov Y.V., Logachev V.S., Kotkov A.I. Combustion of powdered metal in active media. Nauka, USSR. US Air Force Foreign Technology Division Translation FTD-MT-24-551-73 (1972)

  10. Melcher J.C., Burton R.L., Krier H. (2000) Combustion of aluminum particles in solid rocket motor flows. In: Yang V., Brill T.B., Ren W.Z. (eds) Solid Propellant Chemistry, Combustion, and Motor Interior Ballistics Progress in Astronautics and Aeronautics. AIAA, Reston VA, vol 185. pp. 723–747

    Google Scholar 

  11. Melcher J.C., Krier H., Burton R.L. (2002) Burning aluminum particles inside a laboratory-scale solid rocket motor. J. Propul. Power 18: 631–640

    Article  Google Scholar 

  12. Fontijn A., Felder W. (1977) HTFFR kinetic studies of AL + CO2 = AIO + CO from 300 to 1,800 K, a non-Arrenhius reaction. J. Chem. Phys. 67: 1561

    Article  Google Scholar 

  13. King M.K. Modeling of single particle aluminum combustion in CO2 - N2 atmospheres. In: Proceedings of the 17th Symposium (Intl.) on Combustion, The Combustion Institute, Pittsburgh, pp. 1317–1328 (1978)

  14. Gurevich M.A., Lapkina K.I., Ozerov E.S. (1970) Ignition limit of aluminum particles. Combustion, Explosion, and Shock Waves, 6(2): 172–175

    Google Scholar 

  15. Fox T.W., Rackett C.W., Nicholls J.A. Shock wave ignition of magnesium powders. In: Proceedings of the 11th International Symposium on Shock Waves and Tubes, Seattle, pp. 262–268 (1978)

  16. Boiko V.M., Fedorov A.V., Formin V.M., Papyrin A.N., Soloukhin R.I. Ignition of small particle behind shock waves. In: Progress in Astronautics and Aeronautics, AIAA, New York, 87: 71–87 (1982)

  17. Servaites J., Krier H., Melcher J.C., Burton R.L. (2001) Ignition and combustion of aluminum particles in shocked H2O/2 Ar and CO2 /O2 / Ar mixtures. Combust. Flame 125: 1040–1054

    Article  Google Scholar 

  18. Lee J.J., Zhang F. Burning properties of Aluminum in H2O or CO2 Gas. In: Proceedings of the 20th International Colloquium on the Dynamics of Explosions and Reactive Systems, Montreal, Canada, pp. 179.1–179.7 (2005)

  19. Borisov A.A., Gelfand B.E., Timofeev E.I., Tsyganov S.A., Khomic S.V. (1984) Ignition of dust suspensions behind shock waves. In: Bowen J.R., Manson N., Oppenheim A.K., Soloukhin R.I. (eds) Dynamics of Shock Waves, Explosions, and Detonations, Progress in Astronautics and Aeronautics. AIAA, New York, Vol. 96, pp. 332–339

    Google Scholar 

  20. Khasainov B.A., Veyssiere B. (1987) Analysis of the steady, double-front detonation struture for a detonable gas laden with aluminum particles. Archiv. Combust. 7: 333–352

    Google Scholar 

  21. Zhang F., Thibault P.A., Murray S.B. (1998) Transition from deflagration to detonation in an end multiphase slug. Combust. Flame 114: 13–25

    Article  Google Scholar 

  22. Zhang F., Grönig H. (1991) Spin detonation in reactive particles-oxidizing gas flow. Phys. Fluids A 3: 1983–1990

    Article  Google Scholar 

  23. Fried L.E., Howard W.M., Souers P.C. Cheetah 2.0 User’s Manual. Lawrence Livermore National Laboratory, UCRL-MA-117541 Rev. 5 (1998)

  24. Fay J.A. (1959) Two-dimensional detonations: velocity deficits. Phys. Fluids 2: 283–289

    Article  MathSciNet  Google Scholar 

  25. Manson N., Brochet C., Brossard J., Pujol Y. Vibratory phenomena and instabilities of self-sustained detonations in gases. In: Proceedings of the 9th Symposium (Int.) on Combustion, Academic, New York, pp. 461–469 (1963)

  26. Edwards D.H., Thomas G.O., Nettleton M.A. (1979) The diffraction of a planar detonation wave at an abrupt area change. J. Fluid Mech. 95: 79–96

    Article  Google Scholar 

  27. Moen I.O., Donato M., Knystautas R., Lee J.H. The influence of confinement on the propagation of detonations near the detonability limits. In: Proceedings of the 18th Symposium (Int.) on Combustion, The Combustion Institute, Pittsburgh, pp. 1615–1622 (1981)

  28. Moen I.O., Sulmistras A., Thomas G.O., Bjerketvedt D., Thibault P.A. (1986) Influence of cellular regularity on the behavior of gaseous detonations. In: Bowen J.R., Leyer J.C., Soloukhin R.I. (eds) Dynamics of Explosions, Progress in Astronautics and Aeronautics.AIAA, New York,Vol. 106, pp. 220–243

    Google Scholar 

  29. Peraldi O., Veyssiere B. (1986) Experimental study of detonations in starch particle suspensions with O2/ H2, H2/ O2 and C2H4/ O2 Mixtures. In: Bowen J.R., Leyer J.C., Soloukhin R.I. (eds) Dynamics of Explosions, Progress in Astronautics and Aeronautics. AIAA, New York,Vol. 106, pp. 490–504

    Google Scholar 

  30. Zhang F. Detonation waves in Dust Media: A Review. AIAA-2002-0772 (2002)

  31. Zeldovich Y.B., Kogarko S.M., Simonov M.N. (1956) An experimental investigation of sherical detonations of gases. Sov. Phys. Tech. Phys. 1: 1689–1713

    Google Scholar 

  32. Lee J.H.S., Knystautas R., Guirao C. (1982) The link between cell size, critical tube diameter, initiation energy and detonability limits. In: Lee J.H.S., Guirao C.M. (eds) Fuel-air explosions. University of Waterloo Press, Waterloo, Canada, pp. 157–187

    Google Scholar 

  33. Vasilev A.A. (1997) Gaseous fuels and detonation hazards. In: Eisenreich N. (ed) Proceedings of 28th ICT Conference. Karlsruhe, Germany 50.1–50.14

  34. Glassman I. (1977). Combustion. Academic, New York, pp. 168–193

    Google Scholar 

  35. Foelsche R.O., Burton R.I., Krier H. (1998) Ignition and combustion of aluminum particles in H2/ O2/ N2 combustion products. J. Propul. Power 117: 1001–1008

    Article  Google Scholar 

  36. Tanguay V., Goroshin S., Higgins A., Yoshinaka A., Zhang F. Reaction of metal particles in gas-phase detonation products. In: Proceedings of the 20th International Colloquium on the Dynamics of Explosions and Reactive Systems, Montreal, Canada, 225.1–225.16 (2005)

  37. Kogarko S.M., Zeldovich Y.B. (1948) On detonation of gas mixtures. Doklady Akademii Nauk SSSR 63: 553–556

    Google Scholar 

  38. Strehlow R.A., Engel C.D.(1969) Transverse waves in detonation II: structure and spacing in H2 - O2, C2 H2 - O2, C2 H4 - O2, and CH4 - O2 systems. AIAA J. 7: 492–496

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Zhang.

Additional information

Communicated by K. Takayama

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, F., Murray, S.B. & Gerrard, K.B. Aluminum Particles–air Detonation at Elevated Pressures. Shock Waves 15, 313–324 (2006). https://doi.org/10.1007/s00193-006-0027-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00193-006-0027-0

Keywords

PACS

Navigation