Skip to main content
Log in

Experimental Investigation of Nozzle Exit Reflector Effect on Supersonic Jet

  • Original Article
  • Published:
Shock Waves Aims and scope Submit manuscript

Abstract

The present study describes an experimental work to investigate the effect of a nozzle exit reflector on a supersonic jet that is discharged from a convergent–divergent nozzle with a design Mach number of 2.0. An annular reflector is installed at the nozzle exit and its diameter is varied. A high-quality spark schlieren optical system is used to visualize detailed jet structures with and without the reflector. Impact pressure measurement using a pitot probe is also carried out to quantify the reflector’s effect on the supersonic jet which is in the range from an over-expanded to a moderately under-expanded state. The results obtained show that for over-expanded jets, the reflector substantially increases the jet spreading rate and reduces the supersonic length of the jet, compared with moderately under-expanded jets. The reflector’s effect appears more significant in imperfectly expanded jets that have strong shock cell structures, but is negligible in correctly expanded jet.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

D :

nozzle exit diameter

D i :

inner diameter of annular reflector

D o :

outer diameter of annular reflector

D t :

nozzle throat diameter

L :

length

M :

Mach number

p :

pressure

p i :

impact pressure

r :

radial distance from the nozzle axis

t :

reflector size

t b :

reflector width

T :

temperature

x :

distance along the jet axis from nozzle exit

γ:

ratio of specific heats

δ:

jet boundary layer half-width

φ:

phase angle

0:

stagnation state in the plenum chamber

a:

ambient state

c:

potential core

d:

design condition at the nozzle exit

j:

fully expanded condition

s:

supersonic

References

  1. Strykowski P.J. (1996). Counterflow trust vectoring of supersonic jets. AIAA J. 34(10):2306–2314

    Article  Google Scholar 

  2. Jameel M.I., Cormack D.E., Tran H. (1994). Sootblower optimization Part 1: Fundamental hydrodynamics of a sootblower nozzle jet. TAPPI J. 77(5):135–142

    Google Scholar 

  3. Postel O., Heberlein J. Deposition of boron carbide thin film by supersonic plasma jet CVD with secondary discharge. Surf. Coating Technol. 108–109, 247–252 (1998).

    Google Scholar 

  4. Hay J.A., Rose E.G. (1970). In flight shock cell noise. J. Sound Vib. 11(4):411–420

    Article  Google Scholar 

  5. Li P., Halliwell N.A. (1985). Industrial jet noise: coanda nozzles. J. Sound Vib. 99(4):475–491

    Article  Google Scholar 

  6. Love, E.S., Grigsby, C.E., Lee, L.P., Woodling, M.J.: Experimental and theoretical studies of axisymmetric free jets. NASA TR R-6 (1959).

  7. Frauenberger J.H., Forister J.G. (1961). The axial decay and radial spread of a supersonic jet exhausting into air at rest. Aeronaut. Q. 12:131–149

    Article  Google Scholar 

  8. Addy A.L. (1981). Effects of axisymmetric sonic nozzle geometry on Mach disk characteristics. AIAA J. 19(1):121–122

    Article  Google Scholar 

  9. Katanoda H., Handa T., Miyazato Y., Masuda M., Matsuo K. (2001). Effect of Reynolds number on pitot pressure distributions in underexpanded supersonic freejets. J. Propulsion Power 17(4):940–942

    Article  Google Scholar 

  10. Panda J., Seasholtz R.G. (1999). Measurement of shock structure and shock-vortex interaction in underexpanded jets using Rayleigh scattering. Phys. Fluids 11(12):3761–3777

    Article  Google Scholar 

  11. Raman G. (1998). Advances in understanding supersonic jet screech: review and perspective. Prog. Aerosp. Sci. 34:45–106

    Article  Google Scholar 

  12. Harper-Bourne, M., Fisher, M.J.: The noise from shock waves in supersonic jets. Noise mechanisms. In: AGARD Conference Proceedings 131, Brussels, Belgium, 11-1 – 11-13, Advisory Group for Aeronautical Research and Development (1973)

  13. Nagel R.T., Denham J.W., Papathanasiou A.G. (1983). Supersonic jet screech tone cancellation. AIAA J. 21(11):1541–1545

    Article  Google Scholar 

  14. Ponton M.K., Seiner J.M. (1992). The effects of nozzle exit lip thickness on plume resonance. J. Sound Vib. 154(3):531–549

    Article  Google Scholar 

  15. Glass D.R. (1968). Effects of acoustic feedback on the spread and decay of supersonic jets. AIAA J. 6(10):1890–1897

    Article  Google Scholar 

  16. Antonov A.N., Shalaev S.P., Yudelovich M.Ya. (1973). Influence of the discrete component of acoustic oscillations on the flow in an underexpanded supersonic jet. Fluid Dyn. 4:142–148

    Google Scholar 

  17. Lau J.C., Morris P.J., Fisher M.J. (1979). Measurements in subsonic and supersonic free jets using a laser velocimeter. J. Fluid Mech. 93:1–27

    Article  Google Scholar 

  18. Seiner, J.M., Ponton, M.K., Jansen, B.J., Lagen, N.T.: The effects of temperature on supersonic jet noise emission. In: AIAA 14th Aeroacoustic Conference, AIAA-92-02-046 (1992)

  19. Panda J., Seasholtz R.G. (2002). Experimental investigation of density fluctuations in high-speed jets and correlation with generated noise. J. Fluid Mech. 450:97–130

    Article  Google Scholar 

  20. Ibrahim M.K., Kunimura R., Nakamura Y. (2002). Mixing enhancement of compressible jets by using unsteady microjets as actuators. AIAA J. 40(4):681–688

    Article  Google Scholar 

  21. Umeda Y., Ishii R. (2002). Existence of Mach cones and helical vortical structures around the underexpanded circular jet in the helical oscillation mode. J. Acoust. Soc. Am. 112(1):99–107

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y.-H. Kweon.

Additional information

Communicated by K. Takayama

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kweon, YH., Miyazato, Y., Aoki, T. et al. Experimental Investigation of Nozzle Exit Reflector Effect on Supersonic Jet. Shock Waves 15, 229–239 (2006). https://doi.org/10.1007/s00193-006-0021-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00193-006-0021-6

Keywords

PACS

Navigation