Skip to main content

Advertisement

Log in

Pudendal, but not tibial, nerve stimulation modulates vulvar blood perfusion in anesthetized rodents

  • Original Article
  • Published:
International Urogynecology Journal Aims and scope Submit manuscript

Abstract

Introduction and hypothesis

Preclinical studies have shown that neuromodulation can increase vaginal blood perfusion, but the effect on vulvar blood perfusion is unknown. We hypothesized that pudendal and tibial nerve stimulation could evoke an increase in vulvar blood perfusion.

Methods

We used female Sprague–Dawley rats for non-survival procedures under urethane anesthesia. We measured perineal blood perfusion in response to 20-minute periods of pudendal and tibial nerve stimulation using laser speckle contrast imaging (LSCI). After a thoracic-level spinalization and a rest period, we repeated each stimulation trial. We calculated average blood perfusion before, during, and after stimulation for three perineal regions (vulva, anus, and inner thigh), for each nerve target and spinal cord condition.

Results

We observed a significant increase in vulvar, anal, and inner thigh blood perfusion during pudendal nerve stimulation in spinally intact and spinalized rats. Tibial nerve stimulation had no effect on perineal blood perfusion for both spinally intact and spinalized rats.

Conclusions

This is the first study to examine vulvar hemodynamics with LSCI in response to nerve stimulation. This study demonstrates that pudendal nerve stimulation modulates vulvar blood perfusion, indicating the potential of pudendal neuromodulation to improve genital blood flow as a treatment for women with sexual dysfunction. This study provides further support for neuromodulation as a treatment for women with sexual arousal disorders. Studies in unanesthetized animal models of genital arousal disorders are needed to obtain further insights into the mechanisms of neural control over genital hemodynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Kashdan TB, Goodman FR, Stiksma M, Milius CR, McKnight PE. Sexuality leads to boosts in mood and meaning in life with no evidence for the reverse direction: a daily diary investigation. Emotion. 2018;18(4):563–76.

    Article  PubMed  Google Scholar 

  2. Laumann EO, Paik A, Rosen RC. Sexual dysfunction in the United States: prevalence and predictors. J Am Med Assoc. 1999;281(6):537–44.

    Article  CAS  Google Scholar 

  3. Meston CM, Stanton AM. Understanding sexual arousal and subjective–genital arousal desynchrony in women. Nat Rev Urol. 2019;16:107–20.

    Article  PubMed  Google Scholar 

  4. Katz M, Derogatis LR, Ackerman R, Hedges P, Lesko L, Garcia M, et al. Efficacy of flibanserin in women with hypoactive sexual desire disorder: Results from the BEGONIA trial. J Sex Med. 2013;10(7):1807–15.

    Article  CAS  PubMed  Google Scholar 

  5. Clayton AH, Althof SE, Kingsberg S, Derogatis LR, Kroll R, Goldstein I, et al. Bremelanotide for female sexual dysfunctions in premenopausal women: a randomized, placebo-controlled dose-finding trial. Womens Health. 2016;12(3):325–37.

    CAS  Google Scholar 

  6. Kingsberg SA, Clayton AH, Portman D, Williams LA, Krop J, Jordan R, et al. Bremelanotide for the treatment of hypoactive sexual desire disorder: two randomized phase 3 trials. Obstet Gynecol. 2019;134(5):899–908.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Jaspers L, Feys F, Bramer WM, Franco OH, Leusink P, Laan ETM. Efficacy and safety of flibanserin for the treatment of hypoactive sexual desire disorder in women: a systematic review and meta-analysis. JAMA Intern Med. 2016;176(4):453–62.

    Article  PubMed  Google Scholar 

  8. Cavalcanti AL, Bagnoli VR, Fonseca ÂM, Pastore RA, Cardoso EB, Paixão JS, et al. Effect of sildenafil on clitoral blood flow and sexual response in postmenopausal women with orgasmic dysfunction. Int J Gynecol Obstet. 2008;102(2):115–9.

    Article  CAS  Google Scholar 

  9. Laan E, Van Lunsen RHW, Everaerd W, Riley A, Scott E, Boolell M. The enhancement of vaginal vasocongestion by sildenafil in healthy premenopausal women. J Womens Health Gend Based Med. 2002;11(4):357–65.

    Article  PubMed  Google Scholar 

  10. Basson R, McInnes R, Smith MD, Hodgson G, Koppiker N. Efficacy and safety of sildenafil citrate in women with sexual dysfunction associated with female sexual arousal disorder. J Womens Health Gend Based Med. 2002;11(4):367–77.

  11. Siegel S, Noblett K, Mangel J, Bennett J, Griebling TL, Sutherland SE, et al. Five-year followup results of a prospective, multicenter study of patients with overactive bladder treated with sacral neuromodulation. J Urol. 2018;199(1):229–36.

    Article  PubMed  Google Scholar 

  12. Hull T, Giese C, Wexner SD, Mellgren A, Devroede G, Madoff RD, et al. Long-term durability of sacral nerve stimulation therapy for chronic fecal incontinence. Dis Colon Rectum. 2013;56(2):234–45.

    Article  PubMed  Google Scholar 

  13. Yih JM, Killinger KA, Boura JA, Peters KM. Changes in sexual functioning in women after neuromodulation. J Sex Med. 2013;10:2477–83.

    Article  PubMed  Google Scholar 

  14. Pauls RN, Marinkovic SP, Silva WA, Rooney CM, Kleeman SD, Karram MM. Effects of sacral neuromodulation on female sexual function. Int Urogynecology J. 2007;18(4):391–5.

    Article  Google Scholar 

  15. Van Balken MR, Verguns H, Bemelmans BLH. Sexual functioning in patients with lower urinary tract dysfunction improves after percutaneous tibial nerve stimulation. Int J Impot Res. 2006;18(5):470–5.

    Article  PubMed  Google Scholar 

  16. Zimmerman LL, Gupta P, O’Gara F, Langhals NB, Berger MB, Bruns TM. Transcutaneous electrical nerve stimulation to improve female sexual dysfunction symptoms: a pilot study. Neuromodulation. 2018;21(7):707–13.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Hannan JL, Cheung GL, Blaser MC, Pang JJ, Pang SC, Webb RC, et al. Characterization of the vasculature supplying the genital tissues in female rats. J Sex Med. 2012;9(1):136–47.

    Article  PubMed  Google Scholar 

  18. Zimmerman LL, Rice IC, Berger MB, Bruns TM. Tibial nerve stimulation to drive genital sexual arousal in an anesthetized female rat. J Sex Med. 2018;15(3):296–303.

    Article  PubMed  Google Scholar 

  19. Cai RS, Alexander MS, Marson L. Activation of somatosensory afferents elicit changes in vaginal blood flow and the urethrogenital reflex via autonomic efferents. J Urol. 2008;180(3):1167–72.

    Article  CAS  PubMed  Google Scholar 

  20. Rice IC, Zimmerman LL, Ross SE, Berger MB, Bruns TM. Time-frequency analysis of increases in vaginal blood perfusion elicited by long-duration pudendal neuromodulation in anesthetized rats. Neuromodulation. 2017;20(8):807–15.

    Article  PubMed  Google Scholar 

  21. de Groat WC, Tai C. impact of bioelectronic medicine on the neural regulation of pelvic visceral function. Bioelectron Med. 2015;2(1):25–36.

    Article  Google Scholar 

  22. Hoang Roberts L, Vollstedt A, Volin J, McCartney T, Peters KM. Initial experience using a novel nerve stimulator for the management of pudendal neuralgia. Neurourol Urodyn. 2021;40(6):1670–7.

    Article  PubMed  Google Scholar 

  23. Sipski ML, Alexander CJ, Rosen R. Sexual arousal and orgasm in women: effects of spinal cord injury. Ann Neurol. 2001;49(1):35–44.

    Article  CAS  PubMed  Google Scholar 

  24. Anderson KD. Targeting recovery: priorities of the spinal cord-injured population. J Neurotrauma. 2004;21(10):1371–83.

    Article  PubMed  Google Scholar 

  25. Woodard TL, Diamond MP. Physiologic measures of sexual function in women: a review. Fertil Steril. 2009;92(1):19–34.

    Article  PubMed  Google Scholar 

  26. Boyer SC, Bouchard KN, Pukall CF. Laser Doppler imaging as a measure of female sexual arousal: further validation and methodological considerations. Biol Psychol. 2019;148:107741.

    Article  PubMed  Google Scholar 

  27. Jabs F, Brotto LA. Identifying the disruptions in the sexual response cycles of women with sexual interest/arousal disorder. Can J Hum Sex. 2018;27(2):123–32.

    Article  Google Scholar 

  28. Styles SJ, MacLean AB, Reid WMN, Sultana SR. Laser Doppler perfusion imaging: a method for measuring female sexual response. BJOG Int J Obstet Gynaecol. 2006;113(5):599–601.

    Article  CAS  Google Scholar 

  29. Giuliano F, Pfaus J, Balasubramanian S, Hedlund P, Sichi H, Marson L, et al. Experimental models for the study of female and male sexual function. J Sex Med. 2010;7(9):2970–95.

    Article  PubMed  Google Scholar 

  30. Marson L, Giamberardino MA, Costantini R, Czakanski P, Wesselmann U. Animal models for the study of female sexual dysfunction. Sex Med Rev. 2013;1(2):108–22.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Boyer SC, Bouchard KN, Pukall CF. Laser Doppler imaging as a measure of female sexual arousal: further validation and methodological considerations. Biol Psychol. 2019;148:107741.

    Article  PubMed  Google Scholar 

  32. Allers KA, Richards N, Sultana S, Sudworth M, Dawkins T, Hawcock AB, et al. I. Slow oscillations in vaginal blood flow: alterations during sexual arousal in rodents and humans. J Sex Med. 2010;7(3):1074–87.

    Article  PubMed  Google Scholar 

  33. Kovacevic M, Yoo PB. Reflex neuromodulation of bladder function elicited by posterior tibial nerve stimulation in anesthetized rats. Am J Physiol – Ren Physiol. 2015;308(4):F320–9.

    Article  CAS  Google Scholar 

  34. McKenna KE, Nadelhaft I. The organization of the pudendal nerve in the male and female rat. J Comp Neurol. 1986;248(4):532–49.

    Article  CAS  PubMed  Google Scholar 

  35. Bottorff EC, Bruns TM. Pudendal and tibial nerve modulated vulvar blood perfusion in anesthetized rats [Internet]. Open Sci Framework. Available from: https://doi.org/10.17605/OSF.IO/YMDFV

  36. Pacheco P, Martinez-Gomez M, Whipple B, Beyer C, Komisaruk BR. Somato-motor components of the pelvic and pudendal nerves of the female rat. Brain Res. 1989;490(1):85–94.

    Article  CAS  PubMed  Google Scholar 

  37. Xu JJ, Zimmerman LL, Soriano VH, Mentzelopoulos G, Kennedy E, Bottorff EC, et al. Tibial nerve stimulation increases vaginal blood perfusion and bone mineral density and yield load in ovariectomized rat menopause model. Int Urogynecology J. 2022. https://doi.org/10.1007/s00192-022-05125-5.

  38. Cyr MP, Pinard A, Dubois O, Morin M. Reliability of vulvar blood perfusion in women with provoked vestibulodynia using laser Doppler perfusion imaging and laser speckle imaging. Microvasc Res. 2019;121:1–6.

    Article  PubMed  Google Scholar 

  39. Badia J, Pascual-Font A, Vivó M, Udina E, Navarro X. Topographical distribution of motor fascicles in the sciatic-tibial nerve of the rat. Muscle Nerve. 2010;42(2):192–201.

    Article  PubMed  Google Scholar 

  40. Stampas A, Gustafson K, Korupolu R, Smith C, Zhu L, Li S. Bladder neuromodulation in acute spinal cord injury via transcutaneous tibial nerve stimulation: cystometrogram and autonomic nervous system evidence from a randomized control pilot trial. Front Neurosci. 2019;13:119.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Georgakis E, Soames R. Arterial supply to the sciatic nerve in the gluteal region. Clin Anat. 2008;21(1):62–5.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Tim Brown of Moor Instruments for assistance with data collection and analysis, Eric Kennedy and Ahmad Jiman for their help in experiment preparation, and the University of Michigan Unit for Laboratory Animal Medicine for animal husbandry. This study was supported in part by National Institutes of Health Award T32NS115724.

Author information

Authors and Affiliations

Authors

Contributions

EC Bottorff: project development, data collection, data analysis, manuscript writing

TM Bruns: project development, manuscript writing

Corresponding author

Correspondence to Tim M. Bruns.

Ethics declarations

Conflicts of interest

None.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bottorff, E.C., Bruns, T.M. Pudendal, but not tibial, nerve stimulation modulates vulvar blood perfusion in anesthetized rodents. Int Urogynecol J 34, 1477–1486 (2023). https://doi.org/10.1007/s00192-022-05389-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00192-022-05389-x

Keywords

Navigation