Skip to main content

Advertisement

Log in

Puerarin protects fibroblasts against mechanical stretching injury through Nrf2/TGF-β1 signaling pathway

  • Original Article
  • Published:
International Urogynecology Journal Aims and scope Submit manuscript

Abstract

Introduction and hypothesis

Stress urinary incontinence (SUI) is the most common form of urinary incontinence in women, which affects women’s quality of life worldwide. Mechanical injury of the pelvic floor may disrupt the pelvic supportive tissues and connections via the remodeling of extracellular matrix (ECM), which is supposed to be one of the main pathological mechanisms of SUI.

Methods

The SUI mouse model was established using vaginal distension (VD). Leak point pressure (LPP), maximum cystometric capacity (MCC), collagen, Nrf2 and TGF-β1 in the anterior vaginal wall were measured in either wild-type or Nrf2-knockout (Nrf2-/-) female C57BL/6 mice with or without puerarin treatment. Then, the mechanical stretching (MS) loaded on L929 cells was generated by a four-point bending device. mTGF-β1 or LY2109761 (an inhibitor of TGF-β1) was used to verify the protective effect of puerarin after Nrf2 knockdown or overexpression.

Results

The collagen content of the anterior vaginal tissues in VD mice and LPP and MCC was decreased significantly. Besides, the expression levels of Nrf2, TGF-β1, collagen I and collagen III of MS group were downregulated in L929 cells. Puerarin pretreatment could reverse mechanical injury-induced collagen downregulation and Nrf2/TGF-β1 signaling inhibition. Moreover, both LY2109761 pretreatment and Nrf2 knockdown could attenuate the protective effect of puerarin in the mechanical injury-induced ECM remodeling, whereas exogenous TGF-β1 could counteract the effect of Nrf2 downregulation.

Conclusions

Puerarin protected fibroblasts from mechanical injury-induced ECM remodeling through the Nrf2/TGF-β1 signaling pathway. This might be a new strategy for the treatment of SUI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The analyzed datasets generated during the study are available from the corresponding author on reasonable request.

Abbreviations

SUI:

stress urinary incontinence

ECM:

extracellular matrix

VD:

vaginal distension

LPP:

Leak point pressure

MCC:

maximum cystometric capacity

MS:

mechanical stretching

TGF-β1:

transforming growth factor β1

ROS:

reactive oxygen species.

References

  1. Rada MP, Pergialiotis V, Betschart C, Falconi G, Haddad JM, Doumouchtsis SK. A protocol for developing, disseminating, and implementing a core outcome set for stress urinary incontinence. Medicine (Baltimore). 2019;98:e16876. https://doi.org/10.1097/MD.0000000000016876.

    Article  Google Scholar 

  2. Peyrat L, Haillot O, Bruyere F, Boutin JM, Bertrand P, Lanson Y. Prevalence and risk factors of urinary incontinence in young and middle-aged women. Bju Int. 2002;89:61–6. https://doi.org/10.1046/j.1464-4096.2001.01813.x.

    Article  CAS  PubMed  Google Scholar 

  3. Tang J, Li B, Liu C, Li Y, Li Q, Wang L, Min J, Hu M, Hong S, Hong L. Mechanism of mechanical trauma-induced extracellular matrix remodeling of fibroblasts in association with Nrf2/ARE signaling suppression mediating TGF-beta1/Smad3 signaling inhibition. Oxid Med Cell Longev. 2017;2017:8524353. https://doi.org/10.1155/2017/8524353.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Choy KW, Liu YM, Chu CY, Wang CC, Lui WT, Lee LL, Pang MW, Rogers MS, Yip SK. High isoprostane level in cardinal ligament-derived fibroblasts and urine sample of women with uterine prolapse. BJOG. 2008;115:1179–83. https://doi.org/10.1111/j.1471-0528.2008.01806.x.

    Article  CAS  PubMed  Google Scholar 

  5. Kim EJ, Chung N, Park SH, Lee KH, Kim SW, Kim JY, Bai SW, Jeon MJ. Involvement of oxidative stress and mitochondrial apoptosis in the pathogenesis of pelvic organ prolapse. J Urol. 2013;189:588–94. https://doi.org/10.1016/j.juro.2012.09.041.

    Article  CAS  PubMed  Google Scholar 

  6. Bryan HK, Olayanju A, Goldring CE, Park BK. The Nrf2 cell defence pathway: Keap1-dependent and -independent mechanisms of regulation. Biochem Pharmacol. 2013;85:705–17. https://doi.org/10.1016/j.bcp.2012.11.016.

    Article  CAS  PubMed  Google Scholar 

  7. Zhou H, Li X, Shang Y, Chen K. Radical scavenging activity of puerarin: a theoretical study. Antioxidants (Basel). 2019;8. https://doi.org/10.3390/antiox8120590.

  8. Jeon YD, Lee JH, Lee YM, Kim DK. Puerarin inhibits inflammation and oxidative stress in dextran sulfate sodium-induced colitis mice model. Biomed Pharmacother. 2020;124:109847. https://doi.org/10.1016/j.biopha.2020.109847.

    Article  CAS  PubMed  Google Scholar 

  9. Li X, Zhang J, Zhang X, Dong M. Puerarin suppresses MPP(+)/MPTP-induced oxidative stress through an Nrf2-dependent mechanism. Food Chem Toxicol. 2020;144:111644. https://doi.org/10.1016/j.fct.2020.111644.

    Article  CAS  PubMed  Google Scholar 

  10. Min J, Li B, Liu C, Hong S, Tang J, Hu M, Liu Y, Li S, Hong L. Therapeutic Effect and Mechanism of Electrical Stimulation in Female Stress Urinary Incontinence. Urology. 2017;104:45–51. https://doi.org/10.1016/j.urology.2017.02.005.

    Article  PubMed  Google Scholar 

  11. Li X, Zhu Q, Zheng R, Yan J, Wei M, Fan Y, Deng Y, Zhong Y. Puerarin Attenuates Diabetic Nephropathy by Promoting Autophagy in Podocytes. Front Physiol. 2020;11:73. https://doi.org/10.3389/fphys.2020.00073.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Zhang L. Pharmacokinetics and drug delivery systems for puerarin, a bioactive flavone from traditional Chinese medicine. Drug Deliv. 2019;26:860–9. https://doi.org/10.1080/10717544.2019.1660732.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Zeng W, Li Y, Li B, Liu C, Hong S, Tang J, Hong L. Mechanical Stretching induces the apoptosis of parametrial ligament Fibroblasts via the Actin Cytoskeleton/Nr4a1 signalling pathway. Int J Med Sci. 2020;17:1491–8. https://doi.org/10.7150/ijms.46354.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Li Y, Hong L, Liu C, Min J, Hong S, Hu M, Zhao Y, Yang Q, Tang J, He S. Effect of puerarin on collagen metabolism of fibroblasts in pelvic tissue of women with pelvic organ prolapse. Mol Med Rep. 2018;17:2705–11. https://doi.org/10.3892/mmr.2017.8112.

    Article  CAS  PubMed  Google Scholar 

  15. Li Y, Liu C, Li B, Hong S, Min J, Hu M, Tang J, Wang T, Yang L, Hong L. Electrical stimulation activates calpain 2 and subsequently upregulates collagens via the integrin beta1/TGF-beta1 signaling pathway. Cell Signal. 2019;59:141–51. https://doi.org/10.1016/j.cellsig.2019.03.023.

    Article  CAS  PubMed  Google Scholar 

  16. Tang J, Liu C, Min J, Hu M, Li Y, Hong L. Potential therapeutic role of punicalagin against mechanical-trauma-induced stress urinary incontinence via upregulation of Nrf2 and TGF-beta1 signaling : Effect of punicalagin on mechanical trauma induced SUI. Int Urogynecol J. 2017;28:947–55. https://doi.org/10.1007/s00192-017-3283-x.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Wein AJ. Re: A Model for Predicting the Risk of De Novo Stress Urinary Incontinence in Women Undergoing Pelvic Organ Prolapse Surgery. J Urol. 2015;194:470. https://doi.org/10.1016/j.juro.2015.04.009.

    Article  PubMed  Google Scholar 

  18. Han L, Wang L, Wang Q, Li H, Zang H. Association between pelvic organ prolapse and stress urinary incontinence with collagen. Exp Ther Med. 2014;7:1337–41. https://doi.org/10.3892/etm.2014.1563.

    Article  PubMed  PubMed Central  Google Scholar 

  19. DeLancey JO. Structural support of the urethra as it relates to stress urinary incontinence: the hammock hypothesis. Am J Obstet Gynecol. 1994;170(1713-1720):1720–3. https://doi.org/10.1016/s0002-9378(94)70346-9.

    Article  Google Scholar 

  20. Kokcu A, Yanik F, Cetinkaya M, Alper T, Kandemir B, Malatyalioglu E. Histopathological evaluation of the connective tissue of the vaginal fascia and the uterine ligaments in women with and without pelvic relaxation. Arch Gynecol Obstet. 2002;266:75–8. https://doi.org/10.1007/s004040100194.

    Article  CAS  PubMed  Google Scholar 

  21. Lin G, Shindel AW, Banie L, Deng D, Wang G, Hayashi N, Lin CS, Lue TF. Molecular mechanisms related to parturition-induced stress urinary incontinence. Eur Urol. 2009;55:1213–22. https://doi.org/10.1016/j.eururo.2008.02.027.

    Article  CAS  PubMed  Google Scholar 

  22. Wen Y, Zhao YY, Li S, Polan ML, Chen BH. Differences in mRNA and protein expression of small proteoglycans in vaginal wall tissue from women with and without stress urinary incontinence. Hum Reprod. 2007;22:1718–24. https://doi.org/10.1093/humrep/dem039.

    Article  CAS  PubMed  Google Scholar 

  23. Song J, Zhu Y, Li J, Liu J, Gao Y, Ha T, et al. Pellino1-mediated TGF-beta1 synthesis contributes to mechanical stress induced cardiac fibroblast activation. J Mol Cell Cardiol. 2015;79:145-156. https://doi.org/10.1016/j.yjmcc.2014.11.006

  24. Wen Y, Zhao YY, Polan ML, Chen B. Effect of relaxin on TGF-beta1 expression in cultured vaginal fibroblasts from women with stress urinary incontinence. Reprod Sci. 2008;15:312–20. https://doi.org/10.1177/1933719108315299.

    Article  CAS  PubMed  Google Scholar 

  25. Li BS, Guo WJ, Hong L, Liu YD, Liu C, Hong SS, Wu DB, Min J. Role of mechanical strain-activated PI3K/Akt signaling pathway in pelvic organ prolapse. Mol Med Rep. 2016;14:243–53. https://doi.org/10.3892/mmr.2016.5264.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Bellezza I, Giambanco I, Minelli A, Donato R. Nrf2-Keap1 signaling in oxidative and reductive stress. Biochim Biophys Acta Mol Cell Res. 2018;1865:721–33. https://doi.org/10.1016/j.bbamcr.2018.02.010.

    Article  CAS  PubMed  Google Scholar 

  27. Liu C, Yang Q, Fang G, Li BS, Wu DB, Guo WJ, Hong SS, Hong L. Collagen metabolic disorder induced by oxidative stress in human uterosacral ligamentderived fibroblasts: A possible pathophysiological mechanism in pelvic organ prolapse. Mol Med Rep. 2016;13:2999–3008. https://doi.org/10.3892/mmr.2016.4919.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Grote K, Flach I, Luchtefeld M, Akin E, Holland SM, Drexler H, Schieffer B. Mechanical stretch enhances mRNA expression and proenzyme release of matrix metalloproteinase-2 (MMP-2) via NAD(P)H oxidase-derived reactive oxygen species. Circ Res. 2003;92:e80–6. https://doi.org/10.1161/01.RES.0000077044.60138.7C.

    Article  CAS  PubMed  Google Scholar 

  29. Makpol S, Azura JF, Anum MYY, Zurinah WNW. Modulation of collagen synthesis and its gene expression in human skin fibroblasts by tocotrienol-rich fraction. Arch Med Sci. 2011;7:889–95. https://doi.org/10.5114/aoms.2011.25567.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Deconinck E, Custers D, De Beer JO. Identification of (antioxidative) plants in herbal pharmaceutical preparations and dietary supplements. Methods Mol Biol. 2015;1208:181–99. https://doi.org/10.1007/978-1-4939-1441-8_14.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

All authors thank all the teachers in the Department of Gynecology and Obstetrics and Central Laboratory, Renmin Hospital of Wuhan University, for their technical assistance.

Funding

The present study was financially supported by the Fundamental Research Funds for the Central Universities (grant number: 2042022kf1110), the National Key R&D Program of China (grant number: 2018YFC2002204 and 2021YFC2701302) and the National Natural Science Foundation of China (grant number: 81971364).

Author information

Authors and Affiliations

Authors

Contributions

Yang Li: manuscript writing, investigation and data analysis; Cheng Liu and Lian Yang: development and design of methodology; Lu Li: data collection; Li Hong: project development.

Corresponding author

Correspondence to Li Hong.

Ethics declarations

The procedures of the animal study were approved by the ethics committee of the Institutional Animal Care and Use Committee of Renmin Hospital of Wuhan University (20161105).

Conflicts of interest

None.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Liu, C., Yang, L. et al. Puerarin protects fibroblasts against mechanical stretching injury through Nrf2/TGF-β1 signaling pathway. Int Urogynecol J 33, 2565–2576 (2022). https://doi.org/10.1007/s00192-022-05325-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00192-022-05325-z

Keywords

Navigation