Skip to main content

Advertisement

Log in

International Urogynecological Consultation (IUC): pathophysiology of pelvic organ prolapse (POP)

  • Original Article
  • Published:
International Urogynecology Journal Aims and scope Submit manuscript

Abstract

Introduction and hypothesis

This manuscript is the International Urogynecology Consultation (IUC) on pelvic organ prolapse (POP) chapter one, committee three, on the Pathophysiology of Pelvic Organ Prolapse assessing genetics, pregnancy, labor and delivery, age and menopause and animal models.

Materials and methods

An international group of urogynecologists and basic scientists performed comprehensive literature searches using pre-specified terms in selected biomedical databases to summarize the current knowledge on the pathophysiology of the development of POP, exploring specifically factors including (1) genetics, (2) pregnancy, labor and delivery, (3) age and menopause and (4) non-genetic animal models. This manuscript represents the summary of three systematic reviews with meta-analyses and one narrative review, to which a basic scientific comment on the current understanding of pathophysiologic mechanisms was added.

Results

The original searches revealed over 15,000 manuscripts and abstracts which were screened, resulting in 202 manuscripts that were ultimately used. In the area of genetics the DNA polymorphisms rs2228480 at the ESR1 gene, rs12589592 at the FBLN5 gene, rs1036819 at the PGR gene and rs1800215 at the COL1A1 gene are significantly associated to POP. In the area of pregnancy, labor and delivery, the analysis confirmed a strong etiologic link between vaginal birth and symptoms of POP, with the first vaginal delivery (OR: 2.65; 95% CI: 1.81–3.88) and forceps delivery (OR: 2.51; 95% CI: 1.24–3.83) being the main determinants. Regarding age and menopause, only age was identified as a risk factor (OR : 1.102; 95% CI: 1.02–1.19) but current data do not identify postmenopausal status as being statistically associated with POP. In several animal models, there are measurable effects of pregnancy, delivery and iatrogenic menopause on the structure/function of vaginal support components, though not on the development of POP.

Conclusions

Genetics, vaginal birth and age all have a strong etiologic link to the development of POP, to which other factors may add or protect against the risk.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

AUGS:

American Urogynecologic Society (AUGS)

BMI:

Body mass index

ECM:

Extracellular matrix

IUGA:

International Urogynecological Association

IUC:

International Urogynecological Consultation

LA:

Levator avulsion

LAM:

Levator ani muscle

MeSH:

Medical Subject Headings

MMP:

Matrix metalloproteinases

POP:

Pelvic organ prolapse

POPQ:

Pelvic Organ Prolapse Quantification System

SUI:

Stress urinary incontinence

OR:

Odds ratio

References

  1. Altman D, Forsman M, Falconer C, Lichtenstein P. Genetic influence on stress urinary incontinence and pelvic organ prolapse. Eur Urol. 2008;54(4):918–22. https://doi.org/10.1016/j.eururo.2007.12.004.

    Article  PubMed  Google Scholar 

  2. Samimi P, Jones SH, Giri A. Family history and pelvic organ prolapse: a systematic review and meta-analysis. Int Urogynecol J. 2021;32(4):759–74. https://doi.org/10.1007/s00192-020-04559-z.

    Article  PubMed  Google Scholar 

  3. Allen-Brady K, Chua JWF, Cuffolo R, Koch M, Sorrentino F, Cartwright R. Systematic review and meta-analysis of genetic association studies of pelvic organ prolapse. Int Urogynecol J. 2021. https://doi.org/10.1007/s00192-021-04782-2.

  4. Leng B, Zhou Y, Du S, et al. Association between delivery mode and pelvic organ prolapse: a meta-analysis of observational studies. Eur J Obstet Gynecol Reprod Biol. 2019;235:19–25. https://doi.org/10.1016/j.ejogrb.2019.01.031.

    Article  PubMed  Google Scholar 

  5. Friedman T, Eslick GD, Dietz HP. Delivery mode and the risk of levator muscle avulsion: a meta-analysis. Int Urogynecol J. 2019;30(6):901–7. https://doi.org/10.1007/s00192-018-3827-8.

    Article  PubMed  Google Scholar 

  6. de Araujo CC, Coelho SA, Stahlschmidt P, Juliato CRT. Does vaginal delivery cause more damage to the pelvic floor than cesarean section as determined by 3D ultrasound evaluation? A systematic review Int Urogynecol J. 2018;29(5):639–45. https://doi.org/10.1007/s00192-018-3609-3.

    Article  PubMed  Google Scholar 

  7. DuBeau CE. Aging and the Lower Urogenital System. Principles of Gender-Specific Medicine: Elsevier; 2010:432-448.

  8. Nygaard I, Barber MD, Burgio KL, et al. Prevalence of symptomatic pelvic floor disorders in US women. Jama-J Am Med Assoc. 2008;300(11):1311–6. https://doi.org/10.1001/jama.300.11.1311.

    Article  CAS  Google Scholar 

  9. Towers GD. The pathophysiology of pelvic organ prolapse. Female Pelvic Med Reconstruct Surgery. 2004;10(3):109–22.

    Article  Google Scholar 

  10. Wasenda EJ, Atan IK, Subramaniam N, Dietz HP. Pelvic organ prolapse: does hormone therapy use matter? Menopause-J North Am Menopause Soc. 2017;24(10):1185–9. https://doi.org/10.1097/GME.0000000000000898.

    Article  Google Scholar 

  11. Fante JF, Machado HDC, Juliato CRT, Benetti-Pinto CL, Brito LGO. Pelvic floor disorders in women with premature ovarian insufficiency: a cross-sectional study. Menopause. 2020;27(4):450–8. (In eng). https://doi.org/10.1097/gme.0000000000001523.

    Article  PubMed  Google Scholar 

  12. Cattani L, Decoene J, Page AS, Weeg N, Deprest J, Dietz HP. Pregnancy, labour and delivery as risk factors for pelvic organ prolapse: a systematic review. Int Urogynecol J. 2021. https://doi.org/10.1007/s00192-021-04724-y.

  13. Brito LGO, Pereira GMV, Moalli P, et al. Age and/or postmenopausal status as risk factors for pelvic organ prolapse development: systematic review with meta-analysis. Int Urogynecol J. 2021. https://doi.org/10.1007/s00192-021-04953-1.

  14. Mori da Cunha M, Mackova K, Hympanova LH, Bortolini MAT, Deprest J. Animal models for pelvic organ prolapse: systematic review. Int Urogynecol J. 2021;32(6):1331–44. https://doi.org/10.1007/s00192-020-04638-1.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Cartwright R, Kirby AC, Tikkinen KA, et al. Systematic review and metaanalysis of genetic association studies of urinary symptoms and prolapse in women. Am J Obstet Gynecol. 2015;212(2):199 e1–24. https://doi.org/10.1016/j.ajog.2014.08.005.

    Article  CAS  Google Scholar 

  16. Haylen BT, de Ridder D, Freeman RM, et al. An International Urogynecological Association (IUGA)/International Continence Society (ICS) joint report on the terminology for female pelvic floor dysfunction. Neurourol Urodyn. 2010;29(1):4–20. (In eng). https://doi.org/10.1002/nau.20798.

    Article  PubMed  Google Scholar 

  17. Hutton B, Salanti G, Caldwell DM, et al. The PRISMA extension statement for reporting of systematic reviews incorporating network meta-analyses of health care interventions: checklist and explanations. Annals Internal Med. 2015;162(11):777–84. https://doi.org/10.7326/M14-2385.

    Article  Google Scholar 

  18. Ioannidis JP, Boffetta P, Little J, et al. Assessment of cumulative evidence on genetic associations: interim guidelines. Int J Epidemiol. 2008;37(1):120–32. https://doi.org/10.1093/ije/dym159.

    Article  PubMed  Google Scholar 

  19. Thomas V, Shek KL, Guzman Rojas R, Dietz HP. Temporal latency between pelvic floor trauma and presentation for prolapse surgery: a retrospective observational study. Int Urogynecol J. 2015;26(8):1185–9. https://doi.org/10.1007/s00192-015-2677-x.

    Article  CAS  PubMed  Google Scholar 

  20. Dietz HP, Simpson JM. Levator trauma is associated with pelvic organ prolapse. BJOG. 2008;115(8):979–84. (In eng). https://doi.org/10.1111/j.1471-0528.2008.01751.x.

    Article  CAS  PubMed  Google Scholar 

  21. Yuk JS, Lee JH, Hur JY, Shin JH. The prevalence and treatment pattern of clinically diagnosed pelvic organ prolapse: a Korean National Health Insurance Database-based cross-sectional study 2009-2015. Sci Rep. 2018;8(1):1334. (In eng). https://doi.org/10.1038/s41598-018-19692-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Quiroz LH, White DE, Juarez D, Shobeiri SA. Age effects on pelvic floor symptoms in a cohort of nulliparous patients. Female Pelvic Med Reconstr Surg. 2012;18(6):325–8. (In eng). https://doi.org/10.1097/SPV.0b013e3182720255.

    Article  PubMed  Google Scholar 

  23. Wusu-Ansah OK, Opare-Addo HS. Pelvic organ prolapse in rural Ghana. Int J Gynaecol Obstet. 2008;103(2):121–4. (In eng). https://doi.org/10.1016/j.ijgo.2008.06.014.

    Article  PubMed  Google Scholar 

  24. Slieker-ten Hove MC, Pool-Goudzwaard AL, Eijkemans MJ, Steegers-Theunissen RP, Burger CW, Vierhout ME. Prediction model and prognostic index to estimate clinically relevant pelvic organ prolapse in a general female population. Int Urogynecol J Pelvic Floor Dysfunct. 2009;20(9):1013–21. (In eng). https://doi.org/10.1007/s00192-009-0903-0.

    Article  PubMed  Google Scholar 

  25. Masenga GG, Shayo BC, Rasch V. Prevalence and risk factors for pelvic organ prolapse in Kilimanjaro, Tanzania: a population based study in Tanzanian rural community. PLoS One. 2018;13(4):e0195910. (In eng). https://doi.org/10.1371/journal.pone.0195910.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Gyhagen M, Al-Mukhtar Othman J, Akervall S, Nilsson I, Milsom I. The symptom of vaginal bulging in nulliparous women aged 25-64 years: a national cohort study. Int Urogynecol J. 2019;30(4):639–47. (In eng). https://doi.org/10.1007/s00192-018-3684-5.

    Article  PubMed  Google Scholar 

  27. Moalli PA, Howden NS, Lowder JL, et al. A rat model to study the structural properties of the vagina and its supportive tissues. Am J Obstet Gynecol. 2005;192(1):80–8. (In eng). https://doi.org/10.1016/j.ajog.2004.07.008.

    Article  PubMed  Google Scholar 

  28. Urbankova I, Vdoviakova K, Rynkevic R, et al. Comparative anatomy of the ovine and female pelvis. Gynecol Obstet Investig. 2017;82(6):582–91. https://doi.org/10.1159/000454771.

    Article  Google Scholar 

  29. Jacobson C, Bruce M, Kenyon PR, Lockwood A, Miller D, Refshauge G, et al. A review of dystocia in sheep. Small Rumin Res. 2020;192:106209.

    Article  Google Scholar 

  30. Young N, Rosamilia A, Arkwright J, et al. Vaginal wall weakness in parous ewes: a potential preclinical model of pelvic organ prolapse. Int Urogynecol J. 2017;28(7):999–1004. https://doi.org/10.1007/s00192-016-3206-2.

    Article  PubMed  Google Scholar 

  31. Emmerson S, Young N, Rosamilia A, et al. Ovine multiparity is associated with diminished vaginal muscularis, increased elastic fibres and vaginal wall weakness: implication for pelvic organ prolapse. Sci Rep. 2017;7:45709. https://doi.org/10.1038/srep45709.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Hympanova L, Rynkevic R, Urbankova I, et al. Morphological and functional changes in the vagina following critical lifespan events in the ewe. Gynecol Obstet Investig. 2019:1–9. https://doi.org/10.1159/000495348.

  33. Abramowitch SD, Feola A, Jallah Z, Moalli PA. Tissue mechanics, animal models, and pelvic organ prolapse: a review. Eur J Obstet Gynecol Reprod Biol. 2009;144(Suppl 1):S146–58. https://doi.org/10.1016/j.ejogrb.2009.02.022.

    Article  PubMed  Google Scholar 

  34. Joyce JS, Dornak S, Gendron JM, Reyes M, Ruiz JC, Kuehl TJ. Lack of association between pelvic outlet diameter and pelvic organ prolapse in squirrel monkeys. Int Urogynecol J. 2014;25(8):1121–6. https://doi.org/10.1007/s00192-014-2363-4.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Lindo FM, Carr ES, Reyes M, et al. Randomized trial of cesarean vs vaginal delivery for effects on the pelvic floor in squirrel monkeys. Am J Obstet Gynecol. 2015;213(5):735 e1–8. https://doi.org/10.1016/j.ajog.2015.09.003.

    Article  Google Scholar 

  36. Pierce LM, Reyes M, Thor KB, et al. Innervation of the levator ani muscles in the female squirrel monkey. Am J Obstet Gynecol. 2003;188(5):1141–7 (In eng).

    Article  Google Scholar 

  37. Liang R, Knight K, Nolfi A, Abramowitch S, Moalli PA. Differential effects of selective estrogen receptor modulators on the vagina and its supportive tissues. Menopause. 2016;23(2):129–37. https://doi.org/10.1097/GME.0000000000000502.

    Article  PubMed  Google Scholar 

  38. Moalli PA, Debes KM, Meyn LA, Howden NS, Abramowitch SD. Hormones restore biomechanical properties of the vagina and supportive tissues after surgical menopause in young rats. Am J Obstet Gynecol. 2008;199(2):161 e1–8. https://doi.org/10.1016/j.ajog.2008.01.042.

    Article  CAS  Google Scholar 

  39. Sherwood OD, Crnekovic VE, Gordon WL, Rutherford JE. Radioimmunoassay of relaxin throughout pregnancy and during parturition in the rat. Endocrinology. 1980;107(3):691–8. (In eng). https://doi.org/10.1210/endo-107-3-691.

    Article  CAS  PubMed  Google Scholar 

  40. Oliphant SS, Nygaard IE, Zong W, Canavan TP, Moalli PA. Maternal adaptations in preparation for parturition predict uncomplicated spontaneous delivery outcome. Am J Obstetrics Gynecol. 2014;211(6):630 e1–7. (In eng). https://doi.org/10.1016/j.ajog.2014.06.021.

    Article  Google Scholar 

  41. Siafarikas F, Staer-Jensen J, Hilde G, Bo K, Ellstrom EM. Levator hiatus dimensions in late pregnancy and the process of labor: a 3- and 4-dimensional transperineal ultrasound study. Am J Obstetrics Gynecol. 2014;210(5):484 e1–7. (In eng). https://doi.org/10.1016/j.ajog.2014.02.021.

    Article  Google Scholar 

  42. Lanzarone V, Dietz HP. Three-dimensional ultrasound imaging of the levator hiatus in late pregnancy and associations with delivery outcomes. Australian & New Zealand J Obstetrics Gynaecol. 2007;47(3):176–80. (In eng). https://doi.org/10.1111/j.1479-828X.2007.00714.x.

    Article  Google Scholar 

  43. Alperin M, Lawley DM, Esparza MC, Lieber RL. Pregnancy-induced adaptations in the intrinsic structure of rat pelvic floor muscles. Am J Obstet Gynecol. 2015;213(2):191 e1–7. https://doi.org/10.1016/j.ajog.2015.05.012.

    Article  Google Scholar 

  44. Alperin M, Kaddis T, Pichika R, Esparza MC, Lieber RL. Pregnancy-induced adaptations in intramuscular extracellular matrix of rat pelvic floor muscles. Am J Obstet Gynecol. 2016;215(2):210 e1–7. https://doi.org/10.1016/j.ajog.2016.02.018.

    Article  Google Scholar 

  45. Wieslander CK, Marinis SI, Drewes PG, Keller PW, Acevedo JF, Word RA. Regulation of elastolytic proteases in the mouse vagina during pregnancy, parturition, and puerperium. Biol Reprod. 2008;78(3):521–8. (In eng). https://doi.org/10.1095/biolreprod.107.063024.

    Article  CAS  PubMed  Google Scholar 

  46. Liu X, Zhao Y, Gao J, et al. Elastic fiber homeostasis requires lysyl oxidase-like 1 protein. Nat Genet. 2004;36(2):178–82. https://doi.org/10.1038/ng1297.

    Article  CAS  PubMed  Google Scholar 

  47. Liu X, Zhao Y, Pawlyk B, Damaser M, Li T. Failure of elastic fiber homeostasis leads to pelvic floor disorders. Am J Pathol. 2006;168(2):519–28. https://doi.org/10.2353/ajpath.2006.050399.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Drewes PG, Yanagisawa H, Starcher B, et al. Pelvic organ prolapse in fibulin-5 knockout mice: pregnancy-induced changes in elastic fiber homeostasis in mouse vagina. Am J Pathol. 2007;170(2):578–89. (In eng). https://doi.org/10.2353/ajpath.2007.060662.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Alperin M, Feola A, Meyn L, Duerr R, Abramowitch S, Moalli P. Collagen scaffold: a treatment for simulated maternal birth injury in the rat model. Am J Obstetrics Gynecol. 2010;202(6):589.e1–8. https://doi.org/10.1016/j.ajog.2010.04.003.

    Article  CAS  Google Scholar 

  50. Sievert KD, Emre Bakircioglu M, Tsai T, Dahms SE, Nunes L, Lue TF. The effect of simulated birth trauma and/or ovariectomy on rodent continence mechanism. Part I: functional and structural change. J Urol. 2001;166(1):311–7 (In eng).

    Article  CAS  Google Scholar 

  51. Memon HU, Handa VL. Vaginal childbirth and pelvic floor disorders. Women's Health (Lond Engl). 2013;9(3):265–77; quiz 276-7. (In eng). https://doi.org/10.2217/whe.13.17.

    Article  CAS  Google Scholar 

  52. Kearney R, Fitzpatrick M, Brennan S, et al. Levator ani injury in primiparous women with forceps delivery for fetal distress, forceps for second stage arrest, and spontaneous delivery. Int J Gynaecol Obstet 2010;111(1):19-22. https://doi.org/10.1016/j.ijgo.2010.05.019.

  53. DeLancey JO, Miller JM, Kearney R, et al. Vaginal birth and de novo stress incontinence: relative contributions of urethral dysfunction and mobility. Obstet Gynecol. 2007;110(2 Pt 1):354–62. https://doi.org/10.1097/01.AOG.0000270120.60522.55.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Lien KC, Mooney B, DeLancey JO, Ashton-Miller JA. Levator ani muscle stretch induced by simulated vaginal birth. Obstet Gynecol. 2004;103(1):31–40. (In eng). https://doi.org/10.1097/01.aog.0000109207.22354.65.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Hoyte L, Damaser MS, Warfield SK, et al. Quantity and distribution of levator ani stretch during simulated vaginal childbirth. Am J Obstet Gynecol. 2008;199(2):198 e1–5. https://doi.org/10.1016/j.ajog.2008.04.027.

    Article  Google Scholar 

  56. Svabik K, Shek KL, Dietz HP. How much does the levator hiatus have to stretch during childbirth? BJOG. 2009;116(12):1657–62. https://doi.org/10.1111/j.1471-0528.2009.02321.x.

    Article  CAS  PubMed  Google Scholar 

  57. Sindhwani N, Bamberg C, Famaey N, et al. In vivo evidence of significant levator ani muscle stretch on MR images of a live childbirth. Am J Obstet Gynecol. 2017. https://doi.org/10.1016/j.ajog.2017.04.014.

  58. Jing D, Ashton-Miller JA, DeLancey JO. A subject-specific anisotropic visco-hyperelastic finite element model of female pelvic floor stress and strain during the second stage of labor. J Biomech. 2012;45(3):455–60. https://doi.org/10.1016/j.jbiomech.2011.12.002.

    Article  PubMed  Google Scholar 

  59. Oliphant S, Canavan T, Palcsey S, Meyn L, Moalli P. Pregnancy and parturition negatively impact vaginal angle and alter expression of vaginal MMP-9. Am J Obstet Gynecol. 2018;218(2):242 e1–7. https://doi.org/10.1016/j.ajog.2017.11.572.

    Article  Google Scholar 

  60. Alperin M, Feola A, Duerr R, Moalli P, Abramowitch S. Pregnancy- and delivery-induced biomechanical changes in rat vagina persist postpartum. Int Urogynecol J Pelvic Floor Dysfunct. 2010;21(9):1169–74. (In eng). https://doi.org/10.1007/s00192-010-1149-6.

    Article  Google Scholar 

  61. Burnett LA, Cook M, Shah S, Michelle Wong M, Kado DM, Alperin M. Age-associated changes in the mechanical properties of human cadaveric pelvic floor muscles. J Biomech. 2020;98:109436. https://doi.org/10.1016/j.jbiomech.2019.109436.

    Article  PubMed  Google Scholar 

  62. Gyhagen M, Bullarbo M, Nielsen TF, Milsom I. Prevalence and risk factors for pelvic organ prolapse 20 years after childbirth: a national cohort study in singleton primiparae after vaginal or caesarean delivery. BJOG: An Int J Obstetrics Gynaecol. 2013;120(2):152–60. https://doi.org/10.1111/1471-0528.12020.

    Article  CAS  Google Scholar 

  63. Handa VL, Blomquist JL, Knoepp LR, Hoskey KA, McDermott KC, Munoz A. Pelvic floor disorders 5-10 years after vaginal or cesarean childbirth. Obstet Gynecol. 2011;118(4):777–84. https://doi.org/10.1097/AOG.0b013e3182267f2f.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Glazener C, Elders A, MacArthur C, et al. Childbirth and prolapse: long-term associations with the symptoms and objective measurement of pelvic organ prolapse. BJOG: An Int J Obstetrics Gynaecol. 2013;120(2):161–8. https://doi.org/10.1111/1471-0528.12075.

    Article  CAS  Google Scholar 

  65. Lopez-Otin C, Blasco MA, Partridge L, Serrano M, Kroemer G. The hallmarks of aging. Cell. 2013;153(6):1194–217. https://doi.org/10.1016/j.cell.2013.05.039.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

The authors are members of the working group and subgroups on “Pathophysiology of Pelvic Organ Prolapse” within the International Urogynecology Consultation initiative. For 2 years, authors have screened and reviewed literature and helped edit this report.

Corresponding author

Correspondence to Jan A. Deprest.

Ethics declarations

Conflicts of interest

None.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deprest, J.A., Cartwright, R., Dietz, H.P. et al. International Urogynecological Consultation (IUC): pathophysiology of pelvic organ prolapse (POP). Int Urogynecol J 33, 1699–1710 (2022). https://doi.org/10.1007/s00192-022-05081-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00192-022-05081-0

Keywords

Navigation