Skip to main content

Advertisement

Log in

Dimethyl fumarate ameliorates stress urinary incontinence by reversing ECM remodeling via the Nrf2-TGF-β1/Smad3 pathway in mice

  • Original Article
  • Published:
International Urogynecology Journal Aims and scope Submit manuscript

Abstract

Introduction and hypothesis

Mechanical trauma and oxidative injury are involved in the pathogenesis of stress urinary incontinence (SUI), and oxidative stress (OS) is considered a potential therapeutic target. The antioxidant properties of dimethyl fumarate (DMF), a potent activator of Nrf2, have been highlighted recently. We therefore predicted that DMF might have therapeutic effects on mechanical trauma-induced SUI.

Methods

The SUI mice model was established by vaginal distension (VD). Leak point pressure (LPP), serum OS biomarkers, cell proliferation and apoptosis, collagen, elastin, matrix metalloproteinases (MMP), Nrf2, the TGF-β1/Smad3 signaling pathway, and the associated tissue growth factors in the anterior vaginal wall were measured in either wild-type or Nrf2-knockout (Nrf2/) female C57BL/6 mice.

Results

The results showed that DMF improved the VD-induced LPP reduction, alleviated oxidative injury, stimulated cell proliferation and inhibited apoptosis in the anterior vaginal wall tissue of mice. Moreover, DMF treatment reduced the hydrolysis of ECM proteins by MMP2 and MMP9. The above effects may be mediated by a series of tissue growth factors, including α-SMA, PAI-1, and TIMP-2, with the TGF-β1/Smad3 signaling pathway as the core regulatory mechanism. In further study, Nrf2/ mice were used to replicate the SUI model. And the difference is that DMF failed to reactivate the TGF-β1/Smad3 pathway, nor did it improve LPP.

Conclusions

Dimethyl fumarate can ameliorate urethra closure dysfunction in the VD-induced SUI mice model, and the therapeutic effect of DMF is mediated by the Nrf2-dominated antioxidant system and its downstream TGF-β1/Smad3 signaling pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

ARE:

Antioxidant response elements

α-SMA:

Alfa-smooth muscle actin

CAT:

Catalase activity

CMS:

Cyclic mechanical strain

DMF:

Dimethyl fumarate

ECM:

Extracellular matrix

Keap1:

Kelch-like ECH-associated protein 1

LPP:

Leak point pressure

MDA:

Malondialdehyde

MMP:

Matrix metalloproteinase

Nrf2:

Nuclear factor erythroid-2-related factor 2

OS:

Oxidative stress

PAI-1:

Plasminogen activator inhibitor-1

PCNA:

Proliferating cell nuclear antigen

ROS:

Reactive oxygen species

SUI:

Stress urinary incontinence

TGF-β1:

Transforming growth factor-beta1

TIMP:

Tissue inhibitor of metalloproteinase

tSOD:

Total superoxide dismutase

VD:

Vaginal distension

References

  1. Lukacz ES, Santiago-Lastra Y, Albo ME, Brubaker L. Urinary incontinence in women: a review. JAMA. 2017;318:1592–604. https://doi.org/10.1001/jama.2017.12137.

    Article  PubMed  Google Scholar 

  2. Aoki Y, Brown HW, Brubaker L, Cornu JN, Daly JO, Cartwright R. Urinary incontinence in women. Nat Rev Dis Primers. 2017;3:17042. https://doi.org/10.1038/nrdp.2017.42.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Hannestad YS, Rortveit G, Sandvik H, Hunskaar S. A community-based epidemiological survey of female urinary incontinence: the Norwegian EPINCONT study. Epidemiology of incontinence in the county of Nord-Trondelag. J Clin Epidemiol. 2000;53:1150–7.

    Article  CAS  PubMed  Google Scholar 

  4. Almousa S, Bandin VLA. The prevalence of urinary incontinence in nulliparous adolescent and middle-aged women and the associated risk factors: a systematic review. Maturitas. 2018;107:78–83. https://doi.org/10.1016/j.maturitas.2017.10.003.

    Article  PubMed  Google Scholar 

  5. Daly D, Clarke M, Begley C. Urinary incontinence in nulliparous women before and during pregnancy: prevalence, incidence, type, and risk factors. Int Urogynecol J. 2018;29:353–62. https://doi.org/10.1007/s00192-018-3554-1.

    Article  PubMed  Google Scholar 

  6. DeLancey JO. Structural support of the urethra as it relates to stress urinary incontinence: the hammock hypothesis. Am J Obstet Gynecol. 1994;170(1713-20):1720–3. https://doi.org/10.1016/s0002-9378(94)70346-9.

    Article  Google Scholar 

  7. Chen B, Yeh J. Alterations in connective tissue metabolism in stress incontinence and prolapse. J Urol. 2011;186:1768–72. https://doi.org/10.1016/j.juro.2011.06.054.

    Article  CAS  PubMed  Google Scholar 

  8. Tang J, Li B, Liu C, et al. Mechanism of mechanical trauma-induced extracellular matrix remodeling of fibroblasts in association with Nrf2/ARE signaling suppression mediating TGF-β 1/Smad3 signaling inhibition. Oxid Med Cell Longev. 2017;2017:1–14. https://doi.org/10.1155/2017/8524353.

    Article  CAS  Google Scholar 

  9. Zeng Q, Guo Y, Liu Y, et al. Integrin-beta1, not integrin-beta5, mediates osteoblastic differentiation and ECM formation promoted by mechanical tensile strain. Biol Res. 2015;48:25. https://doi.org/10.1186/s40659-015-0014-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Chen YJ, Jeng JH, Chang HH, Huang MY, Tsai FF, Yao CC. Differential regulation of collagen, lysyl oxidase and MMP-2 in human periodontal ligament cells by low- and high-level mechanical stretching. J Periodontal Res. 2013;48:466–74. https://doi.org/10.1111/jre.12028.

    Article  CAS  PubMed  Google Scholar 

  11. Hinz B. The extracellular matrix and transforming growth factor-beta1: tale of a strained relationship. Matrix Biol. 2015;47:54–65. https://doi.org/10.1016/j.matbio.2015.05.006.

    Article  CAS  PubMed  Google Scholar 

  12. Sampson N, Berger P, Zenzmaier C. Redox signaling as a therapeutic target to inhibit myofibroblast activation in degenerative fibrotic disease. Biomed Res Int. 2014;2014:1–14. https://doi.org/10.1155/2014/131737.

    Article  CAS  Google Scholar 

  13. Samarakoon R, Overstreet JM, Higgins PJ. TGF-β signaling in tissue fibrosis: redox controls, target genes and therapeutic opportunities. Cell Signal. 2013;25:264–8. https://doi.org/10.1016/j.cellsig.2012.10.003.

    Article  CAS  PubMed  Google Scholar 

  14. Tang J, Liu C, Min J, Hu M, Li Y, Hong L. Potential therapeutic role of punicalagin against mechanical-trauma-induced stress urinary incontinence via upregulation of Nrf2 and TGF-beta1 signaling: effect of punicalagin on mechanical trauma induced SUI. Int Urogynecol J. 2017;28:947–55. https://doi.org/10.1007/s00192-017-3283-x.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Tang J, Liu C, Li B, et al. Protective role of nuclear factor Erythroid-2-related factor 2 against mechanical trauma-induced apoptosis in a vaginal distension-induced stress urinary incontinence mouse model. Oxid Med Cell Longev. 2019;2019:1–10. https://doi.org/10.1155/2019/2039856.

    Article  CAS  Google Scholar 

  16. Li Q, Li B, Liu C, Wang L, Tang J, Hong L. Protective role of Nrf2 against mechanical-stretch-induced apoptosis in mouse fibroblasts: a potential therapeutic target of mechanical-trauma-induced stress urinary incontinence. Int Urogynecol J. 2018;29:1469–77. https://doi.org/10.1007/s00192-017-3545-7.

    Article  PubMed  Google Scholar 

  17. Linker RA, Haghikia A. Dimethyl fumarate in multiple sclerosis: latest developments, evidence and place in therapy. Ther Adv Chronic Dis. 2016;7:198–207. https://doi.org/10.1177/2040622316653307.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kornberg MD, Bhargava P, Kim PM, et al. Dimethyl fumarate targets GAPDH and aerobic glycolysis to modulate immunity. Science. 2018;360:449–53. https://doi.org/10.1126/science.aan4665.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Saidu N, Kavian N, Leroy K, Jacob C, Nicco C, Batteux F, Alexandre J. Dimethyl fumarate, a two-edged drug: current status and future directions. Med Res Rev. 2019;39(5):1923–52. https://doi.org/10.1002/med.21567.

    Article  PubMed  Google Scholar 

  20. Belcher JD, Chen C, Nguyen J, et al. Control of oxidative stress and inflammation in sickle cell disease with the nrf2 activator dimethyl fumarate. Antioxid Redox Sign. 2017;26:748–62. https://doi.org/10.1089/ars.2015.6571.

    Article  CAS  Google Scholar 

  21. Schulze-Topphoff U, Varrin-Doyer M, Pekarek K, et al. Dimethyl fumarate treatment induces adaptive and innate immune modulation independent of Nrf2. Proc Natl Acad Sci U S A. 2016;113:4777–82. https://doi.org/10.1073/pnas.1603907113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Huang Y, Daneshgari F, Liu G. Successful induction of stress urinary incontinence in mice by vaginal distension does not depend on the estrous cycle. Urology. 2014;83:951–8. https://doi.org/10.1016/j.urology.2013.12.028.

    Article  Google Scholar 

  23. Chen H, Chen C, Lin Y, Chen Y, Chen W, Chen C. Proteomic analysis related to stress urinary incontinence following vaginal trauma in female mice. Eur J Obstet Gynecol Reprod Biol. 2013;171:171–9. https://doi.org/10.1016/j.ejogrb.2013.08.034.

    Article  CAS  PubMed  Google Scholar 

  24. Hijaz A, Daneshgari F, Sievert K, Damaser MS. Animal models of female stress urinary incontinence. J Urol. 2008;179:2103–10. https://doi.org/10.1016/j.juro.2008.01.096.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Herrera-Imbroda B, Lara MF, Izeta A, Sievert K, Hart ML. Stress urinary incontinence animal models as a tool to study cell-based regenerative therapies targeting the urethral sphincter. Adv Drug Deliver Rev. 2015;82-83:106–16. https://doi.org/10.1016/j.addr.2014.10.018.

    Article  CAS  Google Scholar 

  26. Huang J, Cheng M, Ding Y, Chen L, Hua K. Modified vaginal dilation rat model for postpartum stress urinary incontinence. J Obstet Gynaecol Res. 2013;39:256–63. https://doi.org/10.1111/j.1447-0756.2012.01959.x.

    Article  PubMed  Google Scholar 

  27. Damaser MS, Whitbeck C, Chichester P, Levin RM. Effect of vaginal distension on blood flow and hypoxia of urogenital organs of the female rat. J Appl Physiol. 2005;98:1884–90. https://doi.org/10.1152/japplphysiol.01071.2004.

    Article  CAS  PubMed  Google Scholar 

  28. Woo LL, Hijaz A, Kuang M, Penn MS, Damaser MS, Rackley RR. Over expression of stem cell homing cytokines in urogenital organs following vaginal distention. J Urol. 2007;177:1568–72. https://doi.org/10.1016/j.juro.2006.11.047.

    Article  CAS  PubMed  Google Scholar 

  29. Nomiya M, Andersson KE, Yamaguchi O. Chronic bladder ischemia and oxidative stress: new pharmacotherapeutic targets for lower urinary tract symptoms. Int J Urol. 2015;22:40–6. https://doi.org/10.1111/iju.12652.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank all the teachers in the Department of Gynecology and Obstetrics, Central Laboratory and Experimental Animal Center of Renmin Hospital of Wuhan University for their assistance. Thanks to the National Natural Science Foundation of China for funding.

Funding

This study was funded by the National Natural Science Foundation of China (grant no: 81701424).

Author information

Authors and Affiliations

Authors

Contributions

Cheng Liu: investigation, data analysis, manuscript writing; Ying Wang: investigation, data analysis, manuscript writing; Yang Li: investigation, data collection; Jianming Tang: methodology; Shasha Hong: data collection; Li Hong: project development.

Corresponding author

Correspondence to Li Hong.

Ethics declarations

Conflicts of interest

None.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, C., Wang, Y., Li, Y. et al. Dimethyl fumarate ameliorates stress urinary incontinence by reversing ECM remodeling via the Nrf2-TGF-β1/Smad3 pathway in mice. Int Urogynecol J 33, 1231–1242 (2022). https://doi.org/10.1007/s00192-021-05061-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00192-021-05061-w

Keywords

Navigation