Skip to main content

Advertisement

Log in

Structure–function relationship of the human external anal sphincter

  • Original Article
  • Published:
International Urogynecology Journal Aims and scope Submit manuscript

Abstract

Introduction and hypothesis

Obstetrical external anal sphincter (EAS) injury and subsequent dysfunction are leading risk factors for female fecal incontinence (FI). Limited knowledge of the EAS structure–function relationship hinders treatment optimization. We directly measured functionally relevant intrinsic parameters of human EAS and tested whether vaginal delivery alters the EAS structure–function relationship.

Methods

Major predictors of in vivo EAS function were compared between specimens procured from vaginally nulliparous (VN, n = 5) and vaginally parous (VP, n = 7) cadaveric donors: operational sarcomere length (Ls), which dictates force–length relationship; physiological cross-sectional area (PCSA), which determines isometric force-generating capacity; fiber length (Lfn), responsible for muscle excursion and contractile velocity; and muscle stiffness. Data were analyzed using unpaired and paired t tests, α < 0.05. Results are presented as mean ± SEM.

Results

The VN and VP (median parity 3) groups were similar in age and BMI. No gross anatomical defects were identified. EAS Ls (2.36 ± 0.05 μm) was shorter than the optimal Lso (2.7 μm), at which contractile force is maximal, P = 0.0001. Stiffness was lower at Ls than Lso (5.4 ± 14 kPa/μm vs 35.3 ± 12 kPa/μm, P < 0.0001). This structural design allows active and passive tension to increase with EAS stretching. EAS relatively long Lfn (106 ± 24.8 mm) permits rapid contraction without decreased force, whereas intermediate PCSA (1.3 ± 0.3 cm2) is conducive to maintaining resting tone. All parameters were similar between groups.

Conclusions

This first direct examination of human EAS underscores how EAS intrinsic design matches its intended function. Knowledge of the EAS structure–function relationship is important for understanding the pathogenesis of FI and the optimization of treatments for EAS dysfunction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Nygaard I, Barber MD, Burgio KL, Kenton K, Meikle S, Schaffer J, et al. Prevalence of symptomatic pelvic floor disorders in US women. JAMA. 2008;300(11):1311–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Bharucha AE, Dunivan G, Goode PS, Lukacz ES, Markland AD, Matthews CA, et al. Epidemiology, pathophysiology, and classification of fecal incontinence: state of the science summary for the National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK) workshop. Am J Gastroenterol. 2015;110(1):127–36.

    Article  PubMed  Google Scholar 

  3. Meyer I, Richter HE. Evidence-based update on treatments of fecal incontinence in women. Obstet Gynecol Clin N Am. 2016;43(1):93–119.

    Article  Google Scholar 

  4. Dudding TC, Vaizey CJ, Kamm MA. Obstetric anal sphincter injury: incidence, risk factors, and management. Ann Surg. 2008;247(2):224–37.

    Article  PubMed  Google Scholar 

  5. American College of Obstetricians and Gynecologists’ Committee on Practice Bulletins—Obstetrics, Cichowski S, Rogers R. Practice bulletin no. 165: prevention and management of obstetric lacerations at vaginal delivery. Obstet Gynecol. 2016;128(1):e1–e15.

    Article  Google Scholar 

  6. Soerensen MM, Pedersen BG, Santoro GA, Buntzen S, Bek K, Laurberg S. Long-term function and morphology of the anal sphincters and the pelvic floor after primary repair of obstetric anal sphincter injury. Colorectal Dis. 2014;16(10):O347–55.

    Article  CAS  PubMed  Google Scholar 

  7. Norderval S, Oian P, Revhaug A, Vonen B. Anal incontinence after obstetric sphincter tears: outcome of anatomic primary repairs. Dis Colon rectum. 2005;48(5):1055–61.

    Article  PubMed  Google Scholar 

  8. Rajasekaran MR, Jiang Y, Bhargava V, Littlefield R, Lee A, Lieber RL, et al. Length-tension relationship of the external anal sphincter muscle: implications for the anal canal function. Am J Physiol Gastrointest Liver Physiol. 2008;295(2):G367–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Latil M, Rocheteau P, Chatre L, Sanulli S, Memet S, Ricchetti M, et al. Skeletal muscle stem cells adopt a dormant cell state post mortem and retain regenerative capacity. Nat Commun. 2012;3:903.

    Article  PubMed  Google Scholar 

  10. Lieber RL, Friden J. Functional and clinical significance of skeletal muscle architecture. Muscle Nerve. 2000;23(11):1647–66.

    Article  CAS  PubMed  Google Scholar 

  11. Burkholder TJ, Lieber RL. Sarcomere length operating range of vertebrate muscles during movement. J Exp Biol. 2001;204(Pt 9):1529–36.

    CAS  PubMed  Google Scholar 

  12. Katz AM. Ernest Henry Starling, his predecessors, and the “law of the heart”. Circulation. 2002;106(23):2986–92.

    Article  PubMed  Google Scholar 

  13. De Tombe PP, Mateja RD, Tachampa K, Ait Mou Y, Farman GP, Irving TC. Myofilament length dependent activation. J Mol Cell Cardiol. 2010;48(5):851–8.

  14. Alperin M, Tuttle LJ, Conner BR, Dixon DM, Mathewson MA, Ward SR, et al. Comparison of pelvic muscle architecture between humans and commonly used laboratory species. Int Urogynecol J. 2014;25(11):1507–15.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Stewart AM, Cook MS, Esparza MC, Slayden OD, Alperin M. Architectural assessment of rhesus macaque pelvic floor muscles: comparison for use as a human model. Int Urogynecol J. 2017;doi: 10.1007/s00192-017-3303-x

    PubMed Central  Google Scholar 

  16. Mittal RK, Sheean G, Padda BS, Lieber R, Raj Rajasekaran M. The external anal sphincter operates at short sarcomere length in humans. Neurogastroenterol Motil. 2011;23(7):643–e258.

    Article  CAS  PubMed  Google Scholar 

  17. Kim YS, Weinstein M, Raizada V, Jiang Y, Bhargava V, Rajasekaran MR, et al. Anatomical disruption and length-tension dysfunction of anal sphincter complex muscles in women with fecal incontinence. Dis Colon Rectum. 2013;56(11):1282–9.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Lieber RL, Yeh Y, Baskin RJ. Sarcomere length determination using laser diffraction. Effect of beam and fiber diameter. Biophys J. 1984;45(5):1007–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lieber RL, Fazeli BM, Botte MJ. Architecture of selected wrist flexor and extensor muscles. J Hand Surg Am. 1990;15(2):244–50.

    Article  CAS  PubMed  Google Scholar 

  20. Felder A, Ward SR, Lieber RL. Sarcomere length measurement permits high resolution normalization of muscle fiber length in architectural studies. J Exp Biol. 2005;208(Pt 17):3275–9.

    Article  PubMed  Google Scholar 

  21. Alperin M, Cook M, Tuttle LJ, Esparza MC, Lieber RL. Impact of vaginal parity and aging on the architectural design of pelvic floor muscles. Am J Obstet Gynecol. 2016;215(3):312.e1–9

    Article  Google Scholar 

  22. Ward SR, Takahashi M, Winters TM, Kwan A, Lieber RL. A novel muscle biopsy clamp yields accurate in vivo sarcomere length values. J Biomech. 2009;42(2):193–6.

    Article  PubMed  Google Scholar 

  23. Meyer GA, Lieber RL. Elucidation of extracellular matrix mechanics from muscle fibers and fiber bundles. J Biomech. 2011;44(4):771–3.

    Article  PubMed  Google Scholar 

  24. Alperin M, Kaddis T, Pichika R, Esparza MC, Lieber RL. Pregnancy-induced adaptations in intramuscular extracellular matrix of rat pelvic floor muscles. Am J Obstet Gynecol. 2016;215(2):210.e1–7

  25. Richter HE, Fielding JR, Bradley CS, Handa VL, Fine P, FitzGerald MP, et al. Endoanal ultrasound findings and fecal incontinence symptoms in women with and without recognized anal sphincter tears. Obstet Gynecol. 2006;108(6):1394–401.

    Article  PubMed  Google Scholar 

  26. Tuttle LJ, Alperin M, Lieber RL. Post-mortem timing of skeletal muscle biochemical and mechanical degradation. J Biomech. 2014;47(6):1506–9.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Livermore A, Tueting JL. Biomechanics of tendon transfers. Hand Clin. 2016;32(3):291–302.

    Article  PubMed  Google Scholar 

  28. Itoigawa Y, Kishimoto KN, Sano H, Kaneko K, Itoi E. Molecular mechanism of fatty degeneration in rotator cuff muscle with tendon rupture. J Orthop Res. 2011;29(6):861–6.

    Article  CAS  PubMed  Google Scholar 

  29. Killian ML, Cavinatto LM, Ward SR, Havlioglu N, Thomopoulos S, Galatz LM. Chronic degeneration leads to poor healing of repaired massive rotator cuff tears in rats. Am J Sports Med. 2015;43(10):2401–10

  30. Fridén J, Lieber RL. Mechanical considerations in the design of surgical reconstructive procedures. J Biomech. 2002;35(8):1039–45.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank The University of Minnesota’s Anatomy Bequest Program and the individuals who donated their bodies for the advancement of education and research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marianna Alperin.

Ethics declarations

Funding

This study was funded by the Society of Urodynamics, Female Pelvic Medicine, and Urogenital Reconstruction Research Foundation Grant for the Study of Overactive Bladder and Fecal Incontinence, and NICHD R03HDO75994 and K12HD001259 grants.

Conflicts of interest

None.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stewart, A.M., Cook, M.S., Dyer, K.Y. et al. Structure–function relationship of the human external anal sphincter. Int Urogynecol J 29, 673–678 (2018). https://doi.org/10.1007/s00192-017-3404-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00192-017-3404-6

Keywords

Navigation